欢迎参加 2024 年研究机构、中心和实验室展示会,这是新泽西理工学院最强大和最有前途的创新引擎的年度庆典。我们约有 160 个研究所、中心和实验室,反映了大学研究事业的稳步、战略增长。在过去五年中,已经建立了 90 多个这样的实验室,而外部研发奖总额增加了 114% 以上,支出几乎翻了一番。然而,我们今天聚集在一起,因为这些专业知识节点并不是孤立存在的。新泽西理工学院坚信,作为研究人员,当我们跨学科联合起来解决难以简单回答和小众专业知识的复杂挑战时,我们最具创造力和生产力。我们的研究集群涵盖生物科学和生物工程、数据科学和管理、环境和可持续性、材料科学和工程、机器人和机器智能以及创新和创业。这些集群邀请校园内、同行机构以及行业、政府和商业伙伴开展多学科合作,推动研究创新,并将其有效转化为具有高影响力的实际应用。我们的四个研究机构——脑与神经科学研究所、空间天气科学研究所、莱尔商业、技术和社会研究所以及数据科学研究所——在各自的领域应对全系统的挑战。约克环境科学中心、生命科学与工程中心以及最近翻新的微加工创新中心拥有最先进的设备,微加工创新中心是一座拥有最高级别洁净室的最先进的纳米电子制造设施,使我们能够表征和加工新型材料,并制造用于广泛环境、能源、水修复和医疗应用的设备和传感器。我们新的转化研究中心将加快我们将实验室研究转化为有益的、可上市的产品和服务的速度。我们继续关注由美国国家科学基金会、美国国立卫生研究院、美国国防部等联邦机构以及世界卫生组织、盖茨基金会和联合国基金会可持续发展目标等其他主要组织和基金会确定的科学技术“大创意”所启发的三大挑战。在医疗保健领域,我们专注于基于生理学的创新,包括可穿戴健康监测技术;基于细胞和组织工程的治疗技术;创伤性脑损伤、脑健康和神经功能改善;人机辅助设备;女性健康;智能药物输送系统;以及智能医疗保健信息管理系统。我们多元化的可持续发展方法包括跨部门的系统优化、保护和清洁环境的技术以及开发耐用和绿色的下一代基础设施。我们的设备和工艺包括新型能源材料和输送系统;水处理和废物管理;环境和气候适应性;空间天气新知识;智能自适应交通;智能建筑和城市;以及增材制造。我们的第三个重点是高性能计算、量子计算和信息系统、人工智能和网络基础设施技术,包括用于复杂高性能数据分析的系统架构;网络安全和安全自适应网络;机器和人类智能的共同进化和增强;技术和社会应用中的智能机器人,例如辅助生活;以及强大的数据管理。
太阳高能粒子 (SEP) 是空间天气中最危险的事件之一。在过去的几十年中,人们开发了各种各样的技术来预测 SEP 的发生,这些技术主要基于 > 10 MeV 质子通量与某些前兆(例如太阳耀斑、日冕物质抛射等)之间的统计关联。在本文中,我们将重点介绍太阳质子事件实时警报 (ESPERTA) 的经验模型,该模型通过考虑三个输入参数来预测≥ M2 太阳耀斑发生后的 SEP 事件:耀斑源区经度、软 X 射线通量和 ∼ 1 MHz 的射电通量。在这里,我们在监督学习框架中重塑了 ESPERTA 模型,并对预测模型进行了交叉验证,同时还应用了罕见事件校正(即数据过采样和损失函数加权),因为 SEP 的发生具有高度不平衡性。使用合成少数过采样技术可获得最佳性能,检测概率为 0.83,误报率 (FAR) 为 0.39。尽管如此,与不平衡情况相比,验证分数的改善很小。SEP 预测的相关 FAR 是样本基率的自然结果。总之,我们给出的证据表明,预测 SEP 事件的统计方法应考虑以下因素:1) 需要根据 SEP 事件的预期发生情况校准模型,2) 决策阈值强烈影响模型性能,3) 模型中使用的特征,如果单独考虑,则无法完全分离参数空间中的事件类别,因此使用处理不平衡问题的技术并不能保证更好的性能。
摘要:我们这一代人面临的许多最紧迫的环境科学问题都是棘手的问题,这意味着它们无法被彻底孤立出来并用一个“正确”的答案来解决。美国国家科学基金会天气、气候和沿海海洋学可信人工智能研究所 (AI2ES) 致力于通过与来自三个学科的科学家团队开发协同方法来解决这些问题:环境科学(包括大气、海洋和其他物理科学)、人工智能 (AI) 和包括风险沟通在内的社会科学。作为我们工作的一部分,我们开发了一种新颖的暑期学校方法,将于 2022 年 6 月 27 日至 30 日举行。这个暑期学校的目标是教新一代环境科学家如何跨学科并开发整合所有三个学科观点和方法的方法来解决环境科学问题。除了专注于人工智能、环境科学和风险沟通综合的系列讲座之外,今年的暑期学校还包含一个独特的“信任马拉松”部分,参与者可以通过将风险沟通和可解释的人工智能技术应用于预训练的机器学习模型获得实践经验。来自 63 个国家的 677 名参与者注册并在线参加。讲座主题包括信任和可信度(第 1 天)、可解释性和可解释性(第 2 天)、数据和工作流程(第 3 天)以及不确定性量化(第 4 天)。对于信任马拉松,我们为三个不同的应用领域开发了挑战问题:1)严重风暴、2)热带气旋和 3)空间天气。每个领域都有相关的用户角色来指导以用户为中心的开发。
摘要:我们这一代人面临的许多最紧迫的环境科学问题都是棘手的问题,这意味着它们无法被彻底孤立出来并用一个“正确”的答案来解决。美国国家科学基金会天气、气候和沿海海洋学可信人工智能研究所 (AI2ES) 致力于通过与来自三个学科的科学家团队开发协同方法来解决这些问题:环境科学(包括大气、海洋和其他物理科学)、人工智能 (AI) 和包括风险沟通在内的社会科学。作为我们工作的一部分,我们开发了一种新颖的暑期学校方法,将于 2022 年 6 月 27 日至 30 日举行。这个暑期学校的目标是教新一代环境科学家如何跨学科并开发整合所有三个学科观点和方法的方法来解决环境科学问题。除了专注于人工智能、环境科学和风险沟通综合的系列讲座之外,今年的暑期学校还包含一个独特的“信任马拉松”部分,参与者可以通过将风险沟通和可解释的人工智能技术应用于预训练的机器学习模型获得实践经验。来自 63 个国家的 677 名参与者注册并在线参加。讲座主题包括信任和可信度(第 1 天)、可解释性和可解释性(第 2 天)、数据和工作流程(第 3 天)以及不确定性量化(第 4 天)。对于信任马拉松,我们为三个不同的应用领域开发了挑战问题:1)严重风暴、2)热带气旋和 3)空间天气。每个领域都有相关的用户角色来指导以用户为中心的开发。
ION SCV011 被称为“Savvy Simon”,将搭载 16 个有效载荷,其中一个未公开:Kelpie-2,一颗由 AAC Clyde Space 为 ORBCOMM 设计和建造的 3U 卫星,将根据空间数据即服务协议,向 ORBCOMM 及其客户独家提供自动识别系统 (AIS) 数据;EPICHyper-2,一颗由 AAC Clyde Space 设计和建造的 6U EPIC 立方体卫星,将向其合作伙伴加拿大地球观测公司 Wyvern Inc 独家提供高光谱数据;Spei Satelles (SpeiSat),一颗由都灵理工学院和意大利航天局开发的纳米卫星,配备先进的传感器来研究太空环境。该卫星还将通过一本印有 2020 年出版物的纳米书传递希望与和平的信息; Mission 1 是 Outpost 的首个卫星项目,旨在为该公司的渡轮航空电子系统获得重要的飞行经验,之后将开始首次返回地球的任务;NaviLEO™ 是由 SpacePNT 开发的一款低成本、高性能全球导航卫星系统 (GNSS) 接收器;ODIN Space 的 ODIN-DU1 是一款托管传感器,也是首次安装分布式网络,将提供有关致命亚厘米碎片的新数据;RAL Space 的 UKRI SWIMMR-1 是一款空间辐射监测器,旨在收集空间天气监测数据。ION 还将搭载两台 Alba Orbital 的 AlbaPod 6P PocketQube 卫星部署器,将六颗 PocketQube 卫星送入轨道。
太阳高能粒子 (SEP) 是空间天气中最危险的事件之一。在过去的几十年中,已经开发出多种技术来预测 SEP 的发生,主要基于 > 10 MeV 质子通量与某些前兆(例如太阳耀斑、日冕物质抛射等)之间的统计关联。在本文中,我们重点关注太阳质子事件实时警报 (ESPERTA) 的经验模型,该模型通过考虑三个输入参数来预测≥ M2 太阳耀斑发生后的 SEP 事件:耀斑源区经度、软 X 射线通量和 ∼ 1 MHz 的射电通量。在这里,我们在监督学习框架中重塑了 ESPERTA 模型,并对预测模型进行了交叉验证,同时应用了罕见事件校正(即数据过采样和损失函数加权),因为 SEP 发生的高度不平衡性。使用合成少数过采样技术可获得最佳性能,检测概率为 0.83,误报率 (FAR) 为 0.39。尽管如此,与不平衡情况相比,验证分数的改善很小。SEP 预测的相关 FAR 是样本基准率的自然结果。综上所述,我们给出的证据表明,预测 SEP 事件的统计方法应考虑以下因素:1) 需要根据 SEP 事件的预期发生情况校准模型,2) 决策阈值对模型性能有很强的影响,3) 模型中使用的特征,如果单独考虑,无法完全区分参数空间中的事件类别,因此使用处理不平衡问题的技术并不能保证更好的性能。
用例属性 任务流量 消息延迟 用户带宽 通信模式 用户位置 可用性 战斗云 C2 非常低(<100 毫秒) 1-500 Kbps 单播 地面 持久 空间回程 TT&C 低(<5 秒) 1-500 Mbps 多播 LEO 按需 空中回程 交互式 高(10-50 秒) 1-3 Gbps Geocast MEO 预定地面回程 电话会议 无界 5-10 Gbps 发布/订阅 GEO 地面交换 流媒体 40+ Gbps 超越 GEO ISP 批量用户约束 用户链路客户端协议 TRANSEC 稳健性 连接性 网络规模 轨道 RF 定向 PPP/PPPoE LPI/LPD 战略连接 数十或更少 LEO RF 全向 SONET AJ 战术断开连接 数百 MEO 光定向 以太网 空间天气 数千 苔原 光漫射 IP 无界 GEO 量子链路 16 超越 GEO 其他 (MILCOM) 平台属性 有效载荷SWaP 功率 资产控制 内部链接 定制 低(150 千克) 低(150 瓦) 政府射频定向 COTS 中(500 千克) 中(1 千瓦) 商业射频全向 高 高(10 千瓦) 社区 光定向 量子 衍生网络属性 拓扑 功能 命名 路由 自治 内部协议 管理平面 调配时间 骨干 广播 固定 无 电路 NETCONF/YANG 分钟 尾部/边缘/存根 多播 预定 部分 SONET SNMP/MIB 小时 对等 固定(表格) 动态 完整 以太网 SDN 天 临时 IP 周
为了满足我们技术社会的需求,近地空间的卫星数量正在迅速增加。这些卫星预计将在受到强烈粒子辐射的轰击时持续运行,这些辐射可能会损坏电子元件,导致暂时故障、性能下降或整个系统/任务失败。我们尽一切努力设计能够承受恶劣环境的卫星,但在轨道上仍然会出现问题。当出现问题时,有必要找出原因,以便采取适当的措施保护资产并恢复正常运行。然而,诊断与空间天气相关的异常具有挑战性,因为它需要广泛的环境信息、工程知识和专业知识。我们的目标是通过提供将所有必要组件整合在一起并简化最终用户的分析过程的工具来实现有效的异常分析和归因。在这里,我们讨论了我们为构建全面的卫星异常归因工具所做的努力。我们介绍了一些正在进行的项目,包括开发高能电子辐射带模型 (SHELLS)、卫星充电评估工具 (SatCAT) 和太阳质子访问模型 (SPAM)。 SHELLS 电子辐射带模型使用神经网络来绘制从低空到高空填充内磁层的实时高能电子通量。一旦建立了映射,就可以仅使用近乎实时的 POES/MetOp 数据来指定过去和未来的高能电子通量。SatCAT 工具是一个在线系统,允许用户创建在轨卫星当前和历史内部充电水平的时间线,以便与异常时间进行比较。该工具是可配置的,允许用户生成和查看其卫星的内部充电水平以及设计参数,例如屏蔽厚度和材料。最后,太阳质子接入模型 (SPAM) 使用低空 POES/MetOp 测量来绘制整个磁层的太阳质子通量。
前言 我非常高兴地介绍印度国家空间研究委员会 (INCOSPAR)、印度国家科学院 (INSA) 和印度空间研究组织 (ISRO) 为 2024 年 7 月 13 日至 21 日在韩国釜山举行的第 45 届 COSPAR 科学大会准备的《印度空间研究报告》。该报告概述了 2022 年 1 月至 2023 年 12 月期间印度在近地空间、太阳、行星科学和天体物理学几个领域取得的重要成就、成果和研究活动。本报告还介绍了空间科学研究能力建设活动、空间科学和技术学术课程、空间科学和技术方面的国家和国际合作、在各个研究所和中心建立的为印度空间科学探索和研究做出贡献的实验室和设施,等等。印度空间科学界一直活跃于天文学和天体物理学、太阳物理学、空间天气和日地关系、空间和大气科学、行星科学、地磁学和地球科学等领域。本报告介绍了海洋学、大气结构和动力学、云和对流系统、气溶胶、辐射和微量气体、天气和气候变化、中层大气、电离层、磁层、太阳风和空间天气、月球和行星研究、太阳和太阳系天体、恒星、星系、银河系和河外天文学和宇宙学等领域的研究重点。在行星科学领域,2023 年 8 月 23 日,月船三号在月球南部高纬度 Shiv-Shakti 点软着陆,使印度成为第四个掌握月球软着陆技术的国家,但却是第一个在南极地区实现软着陆的国家。月船三号收集了着陆点附近元素组成、热物理性质、等离子体环境和地震活动等一个农历日的数据。成功演示了从月球表面跳跃、从月球轨道脱离到地球轨道,这将为未来的样品返回铺平道路。月船二号轨道器已运行五年,为月球科学提供了新的见解。AstroSat 是印度首个多波长太空天文观测站,已于 2023 年 9 月 28 日成功完成八年运行。该观测站自 2016 年 10 月起以提案方式运行,并向天文学界开放。目前,AstroSat 拥有来自 50 个国家的约 2700 名用户。在最初的八年中,AstroSat 观测已产生了 440 多份同行评审出版物,以及 1500 多份会议论文集、GCN 通告、天文学家电报和其他非同行评审出版物。在此期间,AstroSat 数据得出的一些主要科学成果包括利用 UVIT 发现遥远矮星系中的扩展发射,2018 年爆发衰退阶段,变貌活跃星系 NGC 1566 的光谱跃迁,以及对 OJ 287 火焰星光谱状态的多波长观测。Aditya-L1 于 2023 年 9 月 2 日发射,是印度首次从日地系统拉格朗日点 1 (L1) 研究太阳的太空任务。该任务搭载七个有效载荷来观察光球层、色球层和日冕,为观察太阳活动及其对空间天气的影响提供了更大的优势。Aditya-L1 在 2024 年 5 月捕获了太阳事件(耀斑和日冕抛射)。印度的 X 射线偏振测量任务 XPoSat 于 2024 年 1 月 1 日发射,已开始进行科学观测,其中包括由 XPoSat 上的 X 射线偏振仪 POLIX 生成蟹状脉冲星的脉冲轮廓。我感谢为编写本报告而为其各自研究所和部门开展的空间研究活动提供意见的科学家。我感谢印度空间研究组织总部班加罗尔科学计划办公室代表 INCOSPAR 编撰和编辑本报告的辛勤工作。
Karen St. Germain 博士是美国国家海洋和大气管理局卫星和信息服务部系统副助理署长 (DAAS)。她负责指导美国国家海洋和大气管理局两个主要卫星项目(联合极地卫星系统和地球静止运行环境卫星 - R 系列)、COSMIC-2 任务和空间天气后续任务的持续开发和部署。她还领导开发下一代功能,这些功能将在未来补充和增强这些系统。在担任 DAAS 之前,St. Germain 博士曾担任系统架构和高级规划办公室 (OSAAP) 主任,负责企业级任务架构开发和系统工程,使 NESDIS 成为一个灵活、稳定且反应迅速的民用航天机构,以支持美国国家海洋和大气管理局的任务。St. Germain 博士是企业级规划和具有全国意义的多组织项目的领导者。她还是主要系统采购方面的专家,尤其擅长将新技术转化为操作系统。从 2006 年到 2011 年,圣杰曼博士在成功的 Suomi-NPP 系统开发过程中担任 NOAA 系统性能各方面负责人,对 NESDIS 任务有了深入的了解。2011 年,圣杰曼博士接受了国防部负责采购、技术和后勤的副部长办公室(OUSD AT&L)的空间、战略和情报系统 (SSI) 办公室的职位。在那里,她负责国防部 2014 年太空战略组合审查,这是国防部副部长的一项特殊任务,旨在制定一项战略和实施计划,以应对太空领域不断变化的挑战。圣杰曼博士还领导了 SSI 内的遥感和快速打击部门,负责国防部战略导弹预警和天基环境监测组合的收购塑造和监督,并担任常规快速全球打击计划的项目主任。