地球轨道更加拥挤,拥挤会导致两个轨道物体发生碰撞的概率增加。就像我们重视地球的环境保护一样,以地球为中心的太空产业的未来必须安全和可持续地进行。空间领域感知 (SDA) 和空间交通管理 (STM) 是近乎实时的连续操作,需要不断努力,部分原因是轨道体具有类似天气的混乱性质。太阳辐射压力、驻留空间物体 (RSO) 姿态、轨道机动、大气密度波动和排气等因素与传播模型有巨大不同。从根本上说,对地球轨道上的所有物体有精确、实时和整体感知的唯一方法是建立一个网络来持续监测它。自动化是这种监视网络的关键。空间监视网络 (SSN) 提供了用于 SDA 的大部分数据。 SSN 可探测、跟踪、识别并维护地球轨道上超过 26,000 个物体的目录 [1]。space-track.org 上公开的目录是美国太空司令部 (USSPACECOM) 致力于信息共享以促进安全和可持续的太空环境的一部分。
随着民用和军用领域对地月空间的兴趣日益增加,对地月空间物体的空间域感知 (SDA) 的需求也随之增加。地月空间的太空 SDA 具有挑战性,部分原因是难以准确估计观测卫星的位置,而准确估计是有效执行 SDA 任务的必要条件。使用多颗配备低保真度设备的观测卫星有助于缓解这些问题,因为可以将方差较大的多个数据集聚合在一起,以实现与较少高质量测量系统相同或更高的精度。地月周期轨道用于观测星座,目标航天器位于 L1 Halo 轨道上。所有轨道均使用圆形限制三体问题 (CR3BP) 建模。系统工具包 (STK) 用于计算轨道几何形状和角度 - 仅提取测量值以模拟带有光学传感器的观测航天器。然后利用扩展卡尔曼滤波器处理测量数据以估计目标航天器的位置。分析重点是比较不同数量的观测航天器的有效性。模拟结果发现,使用低保真度星座可以达到高保真度星座所达到的性能。
由于受月球引力的影响,地月空间物体的轨道是非开普勒轨道,无法通过一组简单的特征进行一般参数化。从地球上看,物体也更暗淡,移动速度相对较慢;预计探测和跟踪都会更加困难。在本文中,我们从地球和月球上假设的地面传感器的角度,回顾了一组可能的轨道及其预期的天文测量和光度特征。虽然可能存在多种轨道,但我们重点关注在会合框架中闭合(即周期性)并从平动点(圆形限制性三体问题的静止平衡)发出的特殊类型的轨道。我们研究了 31 个独立的元素周期轨道系列(Doedel 等人,2007 年),每个都是光滑流形。对于每个系列,我们生成一系列具有代表性的会合位置和速度,并基于多面卫星模型模拟预期的观测特征(例如赤经、赤纬、视星等)。在这项研究中,我们希望更好地了解遥感技术如何为地月空间中的航天器发挥作用,以支持下一代传感器架构,包括太空实验,例如 AFRL 的地月公路巡逻系统 (CHPS) 概念。
随着可机动飞行器和计划进入深空(即超越地球同步地球轨道(GEO))的飞行器越来越多,空间环境变得越来越拥挤,空间领域感知(SDA)和空间交通管理(STM)变得越来越具有挑战性。由于地球轨道卫星和地月轨道卫星之间的距离很大且观测几何有限,因此空间基地月领域感知任务的轨道设计是一个重要课题。必须为地月空间物体建立复杂的天体动力学模型,因为月球引力不能像在地球轨道飞行器动态模型中那样被忽略或视为地月物体跟踪动态模型的扰动。地月空间体系在天文学、行星际任务分级、月球探索和通信以及地球轨道插入等应用方面具有重要价值,因此越来越受到航天工业的关注 [1]。放置在地月共线拉格朗日点 L1 和 L2 的航天器可以避免地球和月球的重力井、表面环境问题以及人造和天然空间碎片。这些航天器需要较低的驻留推进剂(每秒厘米级),并且可以在 L1 和 L2 之间或地月空间和日地空间之间飞行 [2]。
瑞典已承诺对太空基础设施进行广泛投资,旨在将 Esrange 太空中心发展成低地球轨道卫星的发射设施。凭借其发射探空火箭的悠久历史和位于北极圈以北的有利位置,其目标是将重量不超过 150 公斤的小型卫星送入太阳同步轨道。作为扩大太空发射能力的努力的一部分,瑞典正在开展多项相关活动,以承担发射国的角色。瑞典的太空立法正在修订中,与此同时,正在研究太空态势感知 (SSA) 的需求和要求,重点是国家需求和可能的实施。瑞典国防研究局 (FOI) 多年来一直在开展 SSA 研究活动,主要从国家角度进行。本文旨在回顾当前国家实施的太空计划,特别是与 SSA 相关的计划,并讨论我们认为未来 SSA 中必不可少的国家组成部分。提出了如何实施完整 SSA 系统的三步计划,从简单的设置(基于开放数据的空间物体目录)开始,最终发展成为一个全面的系统,包括数据处理、校准、传感器调度、派生用户服务以及可能专用的国家传感器等组件。
2008 年 2 月 12 日俄罗斯联邦常驻代表和中国常驻代表致裁军谈判会议秘书长的信函中的“防止在外空放置武器和防止对外空物体使用或威胁使用武力条约”更新草案,联合国文件CD/1839 (2008 年 2 月 29 日);2014 年 6 月 10 日俄罗斯联邦常驻代表和中国常驻代表致裁军谈判会议代理秘书长的信函中的“防止在外空放置武器和防止对外空物体使用或威胁使用武力条约”更新草案,联合国文件CD/1985 (2014 年 6 月 12 日);另见美国常驻代表 2008 年 8 月 19 日致函《关于防止在外层空间放置武器或对外层空间物体使用或威胁使用武力的条约草案的分析》。致裁军谈判会议秘书长,联合国文件。CD/1847(2008 年 8 月 26 日);Fabio Tronchetti 和刘浩,《2014 年更新的 PPWT 草案:切中要害还是偏离目标?,33 S PACE P OL ’Y 38(2015 年)。
摘要 在 EU-SST 研发活动框架内,法国国家太空研究中心和阿丽亚娜集团设计并开发了新的光学监视策略,以便以协调或非协调的方式对低地球轨道、中地球轨道和高地球轨道上的空间物体进行分类。这些活动的第一部分是分析公开文献中的最新技术,并根据从这些论文中找到的元素构建我们自己的解决方案。然后,针对每个轨道区域制定了监视策略,重点是低地球轨道和中地球轨道。两者都有一种协调模式:这意味着这些策略会考虑到站点位置和每个站点可以勘察的天空区域来优化要勘察的天空区域;还为每种策略开发了一种非协调模式,以便评估对性能的影响。针对每种轨道区域已经开发了几种监视模式,本文将对这些模式进行介绍。本文将基于法国国家太空研究中心 BA3E 模拟器和阿丽亚娜集团工具,描述这些策略在由 EU-SST 传感器形成的理论光学网络上的模拟性能。最后,在为期两周的活动期间,使用 GEOTracker® 传感器进行了一项操作实验,以挑战和评估这些策略在操作条件下的性能。
美国太空监视网络 (SSN) 目前跟踪低地球轨道 (LEO) 上的 23,000 多个驻留空间物体 (RSO)。SSN 使用地面雷达和光学方法,这些方法易受大气、天气和光照条件变化的影响。这些障碍将监视能力限制在特征长度大于 10 厘米的物体上。因此,数十万个较小的 LEO RSO 仍未被跟踪,从而降低了整体太空态势感知能力。先前的研究已经证明了使用太空商用星跟踪器 (CST) 探测和跟踪特征长度大于 10 厘米的物体的可行性。我们在本文中提出的分析表明,CST 也可用于探测尺寸小于 10 厘米的碎片颗粒。我们将粒子建模为具有零相位角和 10% 反射率的朗伯球。碎片颗粒的视在目视星等表示为颗粒大小和 RSO-CST 距离的函数,并与各种 CST 的灵敏度水平进行比较。我们发现,在适当照明的情况下,一些 CST 甚至可以在数十公里的距离内探测到特征长度在 1 厘米到 10 厘米之间的碎片。更灵敏的 CST 可以识别数百公里外该尺度较大端(即 10 厘米)的 RSO;或者,它们可以在更近的距离内追踪小于 1 厘米的物体。
地球空间已经很拥挤,而且会更加拥挤。这种趋势会迅速增加空间物体之间发生碰撞的概率。由于物体以极高的速度飞行,碰撞后果将是灾难性的。然而,即使当前空间目录的大小为 O(10^4),准确有效的结合评估 (CA) 和碰撞避免 (COLA) 也一直是一大挑战。由于新卫星数量的增加、传感器能力的提高以及凯斯勒综合症,空间目录的大小将迅速增加,除非设计出一种范式转换计算方法,否则情况会更糟。这里我们提出了 SpaceMap 方法,它可以对 O(10^6) 或更多对象执行实时 CA 和近实时 COLA,前提是通过预处理将卫星之间的时空接近度表示在简洁的数据结构中。理论和计算基础是 Voronoi 图,它被称为二维和三维空间中许多对象之间时空推理的最简洁、最有效的数据结构。该算法以 C++ 实现,并以 AstroLibrary 的形式提供,它具有 RESTful API 和 Python 包,可从应用程序调用。借助该库,任何具有基本编程技能的人都可以轻松开发高效的应用程序来解决具有挑战性的时空问题。还介绍了实验结果。
6.2 该厅的核心职能是:(a) 担任和平利用外层空间委员会及其附属机构的秘书处(第 1472 A(XIV)号决议)、全球导航卫星系统国际委员会及其供应商论坛的执行秘书处(第 61/111 号和第 64/86 号决议)以及空间任务规划咨询小组的秘书处(第 71/90 号决议);(b) 执行联合国空间应用方案(第 2601(XXIV)号和第 37/90 号决议)和联合国灾害管理和应急反应天基信息平台(天基信息平台)方案(第 61/110 号决议);(c) 维护射入外层空间物体登记册(第 1721 B(XVI)号和第 3235(XXIX)号决议); (d) 履行秘书长根据联合国外层空间条约和原则及相关决议承担的职责(第 2222 (XXI) 号、第 2345 (XXII) 号、第 2777 (XXVI) 号、第 3235 (XXIX) 号、第 34/68 号、第 37/92 号、第 41/65 号、第 47/68 号、第 59/115 号和第 62/101 号决议);(e) 支持会员国履行“空间2030”议程实施计划(第 76/3 号决议)。