慕尼黑轨道验证实验 (MOVE) 是一个立方体卫星学生项目,由慕尼黑工业大学火箭和太空飞行科学工作组负责。MOVE-III 是正在开发的第四颗立方体卫星,也是 MOVE 项目的第一个 6U 任务,将在轨道上搭载专门的科学有效载荷。该任务旨在获取低地球轨道亚毫米空间碎片和流星体的现场观测数据,目的是汇编一套通量数据集,以及物体质量和速度测量数据,可用于验证空间碎片模型的小物体估计值,并支持与空间环境特性相关的进一步研究。MOVE-III 立方体卫星采用 MOVE-BEYOND 平台,计划搭载三个碎片密度检索和分析 (DEDRA) 等离子体电离传感器。初步设计评审已于 2022 年初完成,下一个里程碑是关键设计评审,计划于 2023 年完成。本文阐述了任务的科学目标和预期的数据产品,概述了探测器的工作原理,并介绍了整个系统架构、平台配置和子系统交互。此外,还讨论了任务碎片减缓方面的考虑因素。
1. 简介 地球轨道上的太空活动会产生天然流星体和空间碎片。流星体是由彗星和小行星产生的。流星体绕太阳运行,迅速经过地球并离开地球附近,导致流星体与航天器相撞的流量(每年每单位面积撞击物体的数量)相当连续。流星体对航天器的危害很小,因为它们主要是小颗粒。空间碎片由人造物体组成,现在和未来几年都无法发挥有用的作用。这些空间碎片包括非运行卫星、火箭上面级、因意外或故意碰撞和爆炸而解体产生的碎片、火箭尾气中的铝颗粒等。空间碎片绕地球运行并保持在轨道上,直到大气阻力和其他扰动力最终导致其轨道衰减到大气层中。由于大气阻力随着高度的增加而减小,大约 600 公里以上轨道上的大型碎片可以在轨道上停留数十年、数千年甚至数百万年。 (1)近年来,随着航天事业的进步,空间垃圾问题日益凸显。
太空环境修复问题是太空任务参与者的一个越来越多的话题。操作卫星的量和碎屑随着时间而增加。导致碰撞风险增加。卫星执行的避免碰撞避免操作非常要求和干扰有关卫星的运行。已经分析了用于空间环境修复的多个概念,激光动量转移(LMT)解决方案是有希望的。该解决方案提供了通过使用光束的辐射压力来偏转小空间碎屑的能力,从而可以执行小碎屑操纵。这种任务的好处之一既不是侵入性行动(没有消融)
虽然在整个空间中都存在空间碎片,但地球周围有大量积聚,尤其是在大多数空间操作发生的低地球轨道(LEO)中。这也归因于过去十年中小型航天器的发射节奏增加以及近期星座的激增。改善了空间的访问,使狮子座易于使用,对于更多的国家,组织和机构推出小型航天器,这增加了相关的空间碎片风险和威胁。轨道碎屑的积累的估计值表明,直径为1 - 10厘米的大约1,100,000个物体,直径> 10 cm的36,500块超过36,500块,在地球静止,赤道和狮子座高度之间位于轨道上(1)。图13.1显示了地球周围轨道碎片的表示。此外,由于大气阻力仅在<250 km(2)时,空间碎片的轨道寿命可能非常长。
14 Weeden, Brian。nd “2009 年铱星-宇宙碰撞情况说明书”。安全世界基金会。访问日期:2021 年。https://swfound.org/media/6575/swf_iridium_cosmos_collision_fact_sheet_updated_2012.pdf。 15 “空间站空间碎片和载人航天器”。2021 年。美国宇航局。https://www.nasa.gov/mission_pages/station/news/orbital_debris.html。 16 “国际法律制定者面临的空间碎片难题 - Room: The Space Journal。”nd Room, The Space Journal。访问日期:2021 年。https://room.eu.com/article/space-debris-conundrum-for-international-law-makers。 17 Robinson, Tim。2014 年。空间碎片:法律问题。 https://www.aerosociety.com/news/space-debris-the-legal-issues/。18 “外层空间——联合国裁军事务厅。”和联合国。访问日期:2021 年。https://www.un.org/disarmament/topics/outerspace/。19 Janelle, Chantelle。2008 年。“国际空间站宇航员可以使用枪支。”WIS-TV。https://www.wistv.com/story/7875955/international-space-station-astronauts-have-access-to-a-gun/。
自 1957 年首次轨道发射以来,地球轨道上的人造物体数量一直在增长。近距离接近和碰撞风险相应增加 [1, 2],可能导致关键的空间服务中断 [3]。轨道碎片数量模型表明碰撞风险可能会进一步增加 [4, 5, 6, 7, 8];其中一些研究表明,即使在没有新的太空交通的情况下,轨道碎片缓解措施可能也不足,可能需要采取碎片清除补救措施。因此,需要采取缓解措施,以最大限度地减少轨道碎片,并确保未来可以安全进入太空。航天工业利益相关者非常清楚这些挑战,并已取得应对这些挑战的关键里程碑。 2002 年,跨机构空间碎片协调委员会(IADC)制定了一套国际空间碎片减缓指南[ 9 ],旨在短期内限制环境中碎片的产生(通常通过与航天器设计和运行有关的措施)和长期内限制碎片数量的增长(将任务结束后在低地球轨道(LEO)区域停留的时间限制在 25 年内)。2007 年,IADC 更新了这些空间碎片减缓指南,即第一修订版[ 10 ]。IADC 还发表了一份关于计划中的大型 LEO 星座的问题和担忧的声明[ 11 ]。联合国和平利用外层空间委员会(COPUOS)在很大程度上借鉴了 IADC 最初的一套轨道碎片减缓指南,制定了自己的简化版共识空间碎片减缓指南[ 12 ]。联合国大会在其第 62/217 号决议中认可了这些指导方针。国际标准化组织 (ISO) 制定了有关空间碎片减缓的国际标准。ISO 的最高级别空间碎片减缓标准是 ISO-24113“空间系统 - 空间碎片减缓”[13]。该标准及其衍生标准[14、15、16、17、18、19、20],融合了 IADC 和联合国的指导方针以及商业最佳实践和预期行为规范。空间数据系统咨询委员会 (CCSDS) 由世界各大空间机构组成,负责制定航天通信和数据系统标准。通过制定、发布和免费分发国际标准 [21],CCSDS 致力于增强政府和商业的互操作性和交叉支持,同时降低风险、开发时间和项目成本。 CCSDS 的轨道、姿态、会合、再入和事件数据交换国际标准与交换太空数据以促进飞行安全特别相关。一些航天国家已经为本国的航天运营商建立了许可制度或国家监管框架。一般来说,此类国家法规是联合国、IADC 和/或 ISO-24113 的结合,它们通常指常见的缓解措施 [22]。在制定上述指导方针和标准时,并没有预见到增加太空人口的计划,包括更多的立方体卫星和其他小型卫星,以及新的大型卫星星座。这些新计划中的航天器和
自 1957 年首次轨道发射以来,地球轨道上的人造物体数量一直在增长。近距离接近和碰撞风险相应增加,从而导致活跃空间物体受到碰撞 [ 1, 2 ],这可能导致关键空间服务中断 [ 3 ]。轨道碎片数量建模表明碰撞风险可能进一步增加 [ 4, 5, 6, 7, 8 ];其中一些研究表明,即使在没有新的太空交通的情况下,轨道碎片缓解措施也可能不足,可能需要采取碎片清除补救措施。因此,需要采取缓解措施,以尽量减少轨道碎片,并在未来保证安全进入太空。航天工业利益相关者意识到了这些挑战,并已取得解决这些挑战的关键里程碑。2002 年,机构间空间碎片协调委员会 (IADC) 制定了一套国际空间碎片减缓指南 [ 9 ],旨在通过通常与航天器设计和运行相关的措施,在短期内限制环境中碎片的产生,并通过将任务结束后在低地球轨道 (LEO) 区域停留的时间限制在 25 年内,限制碎片数量的长期增长。IADC 于 2007 年更新了这些空间碎片减缓指南,分别为修订版 1 [ 10 ]、2020 年(修订版 2)(未找到在线内容)和 2021 年(修订版 3)[ 11 ]。IADC 还就与计划中的大型 LEO 星座相关的问题和担忧发表了一份声明 [ 12 ]。联合国和平利用外层空间委员会 (COPUOS) 在很大程度上借鉴了 IADC 最初的一套轨道碎片减缓指南,制定了自己的一套简化的共识空间碎片减缓指南 [ 13 ]。联合国大会在其第 62/217 号决议中批准了这些准则。国际标准化组织 (ISO) 制定了解决空间碎片减缓问题的国际标准。ISO 的顶级空间碎片减缓标准是 ISO-24113,“空间系统 - 空间碎片减缓” [ 14 ]。该标准及其衍生标准包括 [15、16、17、18、19],融合了 IADC 和联合国指南以及商业最佳实践和预期行为规范。空间数据系统咨询委员会 (CCSDS) 由世界各主要航天机构组成,负责制定航天通信和数据系统标准。一些航天国家已经为本国的航天运营商建立了许可制度或国家监管框架。CCSDS 致力于通过制定、发布和免费分发国际标准 [ 20 ],增强政府和商业的互操作性和交叉支持,同时降低风险、开发时间和项目成本。CCSDS 用于交换轨道、姿态、会合、再入和事件数据的国际标准与交换空间数据以促进飞行安全特别相关。一般而言,此类国家法规反映了联合国、IADC 和/或 ISO-24113 的结合,它们通常指常见的缓解措施 [ 21 ]。在上述情况下,我们并没有设想通过更多的立方体卫星和其他小型卫星以及新的大型卫星星座来增加我们的太空人口的计划
ISRO是许多国际福拉的积极参与者,例如与13个太空机构,国际宇航员学院(IAA)空间碎片碎片工作组,国际宇航员联合会(IAF)国际空间交通管理工作集团(IAF)国际宇航员组织(ISO)空间工作集团(ISO)太空工作集团(ISO)空间工程集团(ISO)空间库库(ISO)的空间工程集团(IAA)空间工程集团(ISO)空间工作集团(ISO)空间工具集团(ISO)和平工具(IN)和平的空间库库,促进有关太空碎片和外太空活动的长期可持续性的讨论和指南。ISRO,作为2023-24的IADC主席,于2024年4月举行了第42届年度IADC会议。 ISRO参加了IADC年度重新进入运动,并为IADC太空碎片缓解指南和其他空间可持续性方面的修订做出了贡献。 空间碎片的挑战:ISRO,作为2023-24的IADC主席,于2024年4月举行了第42届年度IADC会议。ISRO参加了IADC年度重新进入运动,并为IADC太空碎片缓解指南和其他空间可持续性方面的修订做出了贡献。 空间碎片的挑战:ISRO参加了IADC年度重新进入运动,并为IADC太空碎片缓解指南和其他空间可持续性方面的修订做出了贡献。空间碎片的挑战:
