自 1957 年首次轨道发射以来,地球轨道上的人造物体数量一直在增长。近距离接近和碰撞风险相应增加,从而导致活跃空间物体受到碰撞 [ 1, 2 ],这可能导致关键空间服务中断 [ 3 ]。轨道碎片数量建模表明碰撞风险可能进一步增加 [ 4, 5, 6, 7, 8 ];其中一些研究表明,即使在没有新的太空交通的情况下,轨道碎片缓解措施也可能不足,可能需要采取碎片清除补救措施。因此,需要采取缓解措施,以尽量减少轨道碎片,并在未来保证安全进入太空。航天工业利益相关者意识到了这些挑战,并已取得解决这些挑战的关键里程碑。2002 年,机构间空间碎片协调委员会 (IADC) 制定了一套国际空间碎片减缓指南 [ 9 ],旨在通过通常与航天器设计和运行相关的措施,在短期内限制环境中碎片的产生,并通过将任务结束后在低地球轨道 (LEO) 区域停留的时间限制在 25 年内,限制碎片数量的长期增长。IADC 于 2007 年更新了这些空间碎片减缓指南,分别为修订版 1 [ 10 ]、2020 年(修订版 2)(未找到在线内容)和 2021 年(修订版 3)[ 11 ]。IADC 还就与计划中的大型 LEO 星座相关的问题和担忧发表了一份声明 [ 12 ]。联合国和平利用外层空间委员会 (COPUOS) 在很大程度上借鉴了 IADC 最初的一套轨道碎片减缓指南,制定了自己的一套简化的共识空间碎片减缓指南 [ 13 ]。联合国大会在其第 62/217 号决议中批准了这些准则。国际标准化组织 (ISO) 制定了解决空间碎片减缓问题的国际标准。ISO 的顶级空间碎片减缓标准是 ISO-24113,“空间系统 - 空间碎片减缓” [ 14 ]。该标准及其衍生标准包括 [15、16、17、18、19],融合了 IADC 和联合国指南以及商业最佳实践和预期行为规范。空间数据系统咨询委员会 (CCSDS) 由世界各主要航天机构组成,负责制定航天通信和数据系统标准。一些航天国家已经为本国的航天运营商建立了许可制度或国家监管框架。CCSDS 致力于通过制定、发布和免费分发国际标准 [ 20 ],增强政府和商业的互操作性和交叉支持,同时降低风险、开发时间和项目成本。CCSDS 用于交换轨道、姿态、会合、再入和事件数据的国际标准与交换空间数据以促进飞行安全特别相关。一般而言,此类国家法规反映了联合国、IADC 和/或 ISO-24113 的结合,它们通常指常见的缓解措施 [ 21 ]。在上述情况下,我们并没有设想通过更多的立方体卫星和其他小型卫星以及新的大型卫星星座来增加我们的太空人口的计划
主要关键词