摘要 基于 CRISPR-dCas9 的靶向表观基因组编辑工具可实现对各种基因组修饰的精确操作和功能研究。然而,这些工具通常表现出相当大的上下文依赖性,靶基因和细胞类型之间的功效差异很大,这可能是由于染色质修饰的潜在差异造成的。虽然同时招募多个不同的“效应子”染色质调节剂可以提高功效,但这些系统通常无法控制哪些效应子结合及其空间组织。为了克服这个问题,我们创建了一个新的模块化组合表观基因组编辑平台,称为 SSSavi。该系统充当与 dCas9 融合的可互换和可重新配置的对接平台,可同时招募多达四种不同的效应子,从而可以精确控制和重新配置效应子组成及其结合的空间顺序。我们展示了 SSSavi 系统的活性和特异性,并将其与现有的多效应子靶向系统进行比较,以确定其功效。此外,通过改变效应子募集的空间顺序,在多个靶基因和细胞系中,我们证明了效应子募集顺序对于有效转录调控的重要性。总之,该系统提供了探索效应子共同募集到特定位点的能力,从而可能增强对之前对靶向表观基因组编辑有抵抗力的染色质环境的操纵。
单细胞RNA-Sequencing(Scrnaseq)技术正在迅速发展。尽管在标准的scrnaseq概述中非常有用,但是丢失了原始组织中细胞的空间组织。相反,旨在维持细胞定位的空间RNA-seq技术的吞吐量和基因覆盖率有限。将SCRNASEQ映射到具有空间信息的基因上,在提供空间位置时会增加覆盖范围。但是,执行此类映射的方法尚未标记。为了填补这一差距,我们组织了梦想的单细胞转录组学挑战,重点是从scrnaseq数据中从果蝇胚胎中的细胞进行空间重新构造,利用了银标准,并带有银色标准基因,具有原位杂交数据,来自伯克利果蝇转录网络项目的原位杂交数据。34个参与的团队使用了不同的算法选择进行基因选择和位置预测,同时能够正确定位细胞的簇。选择预测基因对于此任务至关重要。预测基因的表达熵相对较高,空间聚类较高,并包括显着的发育基因,例如间隙和成对基因和组织标记。将前10种方法应用于斑马鱼胚胎数据集,产生了相似的性能和
了解单个细胞的祖先状态和谱系关系可以揭示发育背后的动态程序。通过设计细胞来主动记录自身基因组 DNA 中的信息可以揭示这些历史,但现有的记录系统信息容量有限或会破坏空间背景。在这里,我们介绍了 baseMEMOIR,它结合了碱基编辑、顺序杂交成像和贝叶斯推理,可以重建高分辨率细胞谱系树和细胞状态动态,同时保留空间组织。BaseMEMOIR 随机且不可逆地将工程二核苷酸编辑为三种备选图像可读状态之一。通过基因组整合可编辑二核苷酸阵列,我们构建了一个具有 792 位可记录、图像可读内存的胚胎干细胞系,比最先进的技术增加了 50 倍。模拟表明,这种内存大小足以准确重建深层谱系树。通过实验,baseMEMOIR 可以精确重建胚胎干细胞群落中 6 代或更多代的谱系树。此外,它还允许从端点图像推断祖先细胞状态及其定量细胞状态转换率。因此,baseMEMOIR 提供了一个可扩展的框架,用于重建空间组织的多细胞系统中的单细胞历史。
注意力/多动症(ADHD)是一种异性神经发育状况,同时发生条件的流行率很高,导致长期管理中的困难增加。全基因组关联研究已经鉴定了多动症和同时发生的psy-哲学疾病之间共享的变体。但是,遗传机制尚未完全理解。我们将基因表达和空间组织数据整合到了胎儿和成人皮质组织中推定的因果ADHD基因的两样本的孟德尔随机研究中。我们在皮质组织中鉴定了多动症的四个基因(胎儿:ST3GAL3,PTPRF,PIDD1;成人:ST3GAL3,TIE1)。蛋白质 - 与因果ADHD基因所鉴定的生物学途径相结合的蛋白质相互作用数据库,这些途径将这些基因与条件(例如类风湿关节炎)和生物标志物(例如淋巴细胞计数)联系起来,但已知与ADHD相关,但没有先前显示的遗传关系。在成年肝组织上重复进行分析,在成年肝组织中,假定的因果ADHD基因ST3GAL3与胆固醇特征有关。此分析提供了对组织依赖性的时间关系,同时存在性状和生物标志物之间的依赖性时间关系。重要的是,它提供了先前研究和未研究的同时存在条件之间的遗传相互作用的证据。
2.6 尽管该校区于 1962 年开放,但直到 1999 年 2020 愿景发布之前,一直没有总体总体规划。该总体规划随后于 2010 年在剑桥地方规划 (2006) 中分配了第二阶段土地后进行了更新,由 Allies & Morrison Architects 领导的校园战略总体规划和愿景文件确定并解决了场地空间组织方面的关键挑战,并寻求为医院和更广泛的生物医学校园的用户提供更全面、更连贯的绿色空间和公共领域体验。这项工作与弗朗西斯克里克大道沿线生物医学扩建第一阶段的现有和新兴工作相关(1999 年获得同意),该工作已经确定了一系列参数计划来管理开发的形式和规模。它还期待第二阶段沿 Dame Mary Archer Way 进一步扩建。总体规划未被理事会采纳,但对确定校园协调变革的雄心具有指导意义。最近完成的计划和包括第一阶段和第二阶段的新通道在内的基础设施的提供,是公共和私营部门从启动到项目设计和交付过程中合作的一个很好的例子。
类器官是一种三维结构,其特征是细胞空间组织和功能接近其模仿的天然组织。目前已有报道称,人们尝试创建源自多种组织的类器官,包括睾丸。睾丸类器官有可能提高我们对调节睾丸形态发生、生理学和病理生理学的机制的认识。它们尤其可以证明是了解不育症中生殖细胞生态位调节复杂机制的有用工具,因为它们提供了在自组装之前控制和修改细胞类型的性质的可能性,从而为开发恢复生育能力的创新方法开辟了前景。迄今为止,针对睾丸类器官形成的研究很少,描述具有睾丸特异性结构和功能的类器官生成的研究就更少了。虽然研究人员描述了与睾丸组织形态发生和药物毒性有关的有趣应用,但在睾丸类器官最终导致受精精子的产生之前,还需要进一步研究。本综述将介绍用于诱导睾丸细胞体外成熟的常规系统,描述用于开发睾丸类器官的不同方法,并讨论它们在男性生殖生物学领域的潜在应用。生殖 (2021) 161 R103–R112
太空飞行系列文章的一部分 历史 太空飞行史 太空竞赛 太空飞行时间线 太空探测器 月球任务 应用 地球观测卫星 间谍卫星 通讯卫星 军用卫星 卫星导航 太空望远镜 太空探索 太空旅游 太空殖民 航天器 机器人航天器 卫星 太空探测器 货运航天器 载人航天 太空舱 阿波罗登月舱 航天飞机 空间站 太空飞机 航天发射 太空港 发射台 一次性和可重复使用的运载火箭 逃逸速度 非火箭航天发射 航天类型 亚轨道 轨道 行星际 星际 星系际 空间组织列表 航天机构 太空部队 公司 太空飞行门户网站 卫星导航或 satnav 系统是一种使用卫星提供自主地理定位的系统。覆盖全球的卫星导航系统称为全球导航卫星系统 (GNSS)。截至 2023 年[更新],有四个全球系统投入运营:美国的全球定位系统 (GPS)、俄罗斯的全球导航卫星系统 (GLONASS)、中国的北斗卫星导航系统[1] 和欧盟的伽利略。[2] 正在使用的区域导航卫星系统是日本的准天顶卫星系统 (QZSS),这是一种基于 GPS 卫星的增强系统,可提高 GPS 的准确性,卫星导航独立于 GPS 计划于 2023 年实现[3],以及印度的区域导航卫星
1 IV 设计理论专业选修课 AR204201AR Sayon Pramanik 先生,助理教授 Nil 23 CPI >8.0 2 IV 建筑艺术专业选修课 AR204202AR Abir Bandyopadhyay 博士。教授 无 23 CPI >8.0 3 VI 抗震建筑 开放 选修 AR206301AR Debashis Sanyal 博士,教授 无 45 CPI >8.0 4 VI 通用设计 开放 选修 AR206302AR Shruti Sharad Nagdeve 博士,助理教授 无 45 CPI >8.0 5 VI 灾害管理与减灾系统 开放 选修 AR206303AR Kabita Biswas Sharma 女士,助理教授 无 45 CPI >8.0 6 X 物理规划、理论和技术 专业 选修 AR210201AR Vivek Agnihotri 博士,助理教授 无 35 CPI >8.0 7 X 人类住区与空间组织 专业 选修 AR210203AR Sayon Pramanik 先生,助理教授 无 35 CPI >8.0 8 X 远程传感和 GIS 基础 专业选修课 AR210204AR Vivek Agnihotri 博士,助理教授 无 35 CPI >8.0 9 X 建筑认证和评级系统 专业选修课 AR210205AR Devanshi Gaur 女士,助理教授 无 35 CPI >8.0 10 X 建筑经济学和社会学 专业选修课 AR210206AR Sachin Sahu 先生,助理教授 无 35 CPI >8.0
摘要 — 太空任务面临日益增加的对抗性威胁,使安全问题比以往任何时候都更加重要。随着太空变得拥挤和充满争议,这些任务的成功和安全在很大程度上依赖于复杂系统的安全性和弹性。不幸的是,大多数太空网络安全标准、指南和框架往往未能在初始设计阶段将安全性作为主要考虑因素,并且通常在任务部署后才加以考虑。太空任务的安全设计方法应解决任务的多样性和每个任务的独特特征。为了应对这一挑战,我们引入了安全组件,这是一种系统化的方法来思考太空任务的安全设计。我们的设计策略涉及安全模块的概念,作为保护太空任务的基础构建模块。这些模块可以灵活组合,以创建定制的安全架构,以满足每个太空任务的独特要求。我们通过将我们的方法应用于航天器的关键组件(特别是星跟踪器)来证明其可用性。我们讨论了我们的策略的实用性、灵活性和可扩展性,以及它对即将出台的 IEEE 空间系统网络安全技术标准的适用性。我们的提案旨在通过补充现有的系统工程策略来增强而非取代自上而下的安全方法。此外,我们强调,我们的方法可以被各个空间组织轻松采用,并适用于包括系统之系统在内的其他领域,突出了其在空间任务之外广泛应用的潜力。索引术语 — 安全设计、空间网络安全、任务网络安全、系统之系统安全
– 奥地利航天局 (ASA)/奥地利。– 比利时联邦科学政策办公室 (BFSPO)/比利时。– 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。– 中国卫星发射和跟踪控制总局、北京跟踪与电信技术研究所 (CLTC/BITTT)/中国。– 中国科学院 (CAS)/中国。– 中国空间技术研究院 (CAST)/中国。– 联邦科学与工业研究组织 (CSIRO)/澳大利亚。– 丹麦国家空间中心 (DNSC)/丹麦。– 航空航天科学与技术部 (DCTA)/巴西。– 电子和电信研究院 (ETRI)/韩国。– 欧洲气象卫星利用组织 (EUMETSAT)/欧洲。– 欧洲电信卫星组织 (EUTELSAT)/欧洲。– 地理信息和空间技术发展机构 (GISTDA)/泰国。– 希腊国家空间委员会 (HNSC)/希腊。– 印度空间研究组织 (ISRO)/印度。– 空间研究所 (IKI)/俄罗斯联邦。– KFKI 粒子与核物理研究所 (KFKI)/匈牙利。– 韩国航空宇宙研究院 (KARI)/韩国。– 通信部 (MOC)/以色列。– 国家信息和通信技术研究所 (NICT)/日本。– 国家海洋和大气管理局 (NOAA)/美国。– 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。– 国家空间组织 (NSPO)/中国台北。– 海军空间技术中心 (NCST)/美国。– 土耳其科学技术研究委员会 (TUBITAK)/土耳其。– 南非国家航天局 (SANSA)/南非共和国。– 空间和高层大气研究委员会 (SUPARCO)/巴基斯坦。– 瑞典空间公司 (SSC)/瑞典。– 瑞士空间办公室 (SSO)/瑞士。– 美国地质调查局 (USGS)/美国。