。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 12 月 17 日发布。;https://doi.org/10.1101/2024.12.12.628265 doi:bioRxiv 预印本
在制造业和仓储业中,肌肉骨骼损伤很普遍,损害了工人的生活质量,并且给雇主带来了高昂的成本。出于这些原因,职业健康与安全专业人员正在寻找新的方法,例如使用可穿戴技术,以试图减少或防止肌肉骨骼损伤的发生。1 根据美国劳工部劳工统计局 (BLS) 的数据,从 2011 年到 2020 年,制造业和仓储业工作场所的肌肉骨骼损伤发生率高于所有私营行业,无论是否有工作调动或工作限制,导致缺勤。2 BLS 还报告称,从 2021 年到 2022 年,仓库工人遭受肌肉骨骼损伤的几率几乎是所有私营行业的五倍(见图 1),3 我们最近发现,雇主和工人可能低估了这些伤害。 4 根据美国一家工伤赔偿保险提供商 2024 年的评估,2021 年肌肉骨骼损伤给雇主造成的损失至少达到 177 亿美元,而涉及外部来源的过度劳累(例如举起或搬运物体)导致的制造和仓储业工伤赔偿损失最大。5
如果我们更换您的设备,则您的设备将被翻新的型和质量的三星设备替换,并且具有可比的功能和功能,但不一定具有相同的颜色,并且不超过我们确定的设备的当前值。在原始制造商包装中包含的标准配件只有在与替换设备不兼容时才能替换。已被替换零件或设备替换的所有零件和设备成为我们的属性。本计划下的保护将在此计划中剩下的时间内扩展到替换设备。替换设备将成为受保护的设备。本计划涵盖的任何维修只能由三星授权服务中心进行。
摘要对于医疗传感设备,例如伤口愈合贴片,需要提供可穿戴和长期可用的电源。 这就需要经济高效、重量轻的电池。 我们在此提出一种由 Zn 阳极和聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)阴极组成的金属空气电池。 PEDOT:PSS 层通过薄膜沉积而成,由于其高粘附性而用作阴极,无需粘合剂。 分析了两种不同厚度的薄膜类型。 评估了 1-丁基-3-甲基咪唑辛基硫酸盐离子液体(据报道也充当稳定剂)对电性能的影响。 电极表现出低表面电阻率和相当大的放电容量。 结果表明,PEDOT:PSS 在空气电极中适当地充当了 O 2 氧化还原反应基质和导电粘合剂,这意味着 PEDOT:PSS 薄膜适合用于 Zn-空气电池的阴极。此外,我们展示了一种聚合物生物相容性锌空气电池装置,总厚度约为 2 毫米,易于组装、重量轻且经济高效。
现在,我们可以想象一个未来,世界上有残疾人生活的十亿人中有许多人可以在不损害的情况下度过自己的日常生活,这要归功于可穿戴的机器人[1]。这些设备,包括外骨骼和假肢,有可能革新我们协助个人受损的方式。对于上限,可穿戴设备可以在操纵任务中提供抓地力并掌握稳定性,对于下limb,它们可以改善步态模式并减少能量消耗。这些系统的发展激增,最初的工作主要集中在机械设计,人体的界面以及感知用户的四肢上。这产生了有效的系统,以帮助水平地形上的基本抓地任务和运动[2]。扩展到更复杂的任务和更高级别的援助需要推断用户的意图。例如,辅助手套需要知道用户要掌握特定对象以执行特定的任务,然后将掌握类型和手指跨度调整为该对象和任务。对于腿部外骨骼或假肢,该系统需要检测到用户计划上台或穿越湿的人行道,因此可以调整联合扭矩以最大程度地提高援助和稳定性。目前,最流行的下LIMB用户意图的方法是基于用户的运动学信息的惯性传感器。例如,可以使用脚上的惯性测量单元估算脚跟罢工。推断用户意图的另一种方法是利用神经肌肉界面,例如肌电图(EMG)。基于先前步态周期的控制策略可以通过假设用户打算采用类似的运动模式来预测当前的步态周期。这种方法可以测量肌肉电信号来推断运动激活。例如,可以使用从身体部位到肢体截肢的EMG信号来推断缺失的肢体的故意作用以控制活跃的上LIMB假体。基于这些生物学信号的接口和用户的行为提供了对用户内部状态的估计,但是可以解码的信息量仅限于简单的推论,例如通过关节角度传感检测步行速度的变化或用EMG脉冲触发假肢闭合[3]。这将可穿戴设备限制在少量任务中,并且用户通常将控制被认为是复杂而不自然的[4]。这是较高的上限上限假体遗弃率相对较大的原因之一。要扩大任务范围和援助质量,可穿戴机器人必须使用有关发生运动动作的上下文的信息。例如,通过广泛的机器学习,腿部肌肉上的EMG传感器可以检测与水平运动和上升楼梯之间过渡相关的肌肉活动的变化。专门基于EMG,过渡过程中的分类误差比稳态期间的分类误差高四倍[5]。另一方面,上下文的知识(楼梯的位置和步行方向)将允许前方的几个步骤和更高的准确性。计算机视觉可以在获取有关环境和任务上下文的信息中发挥核心作用。视觉提供了有关用户及其周围环境的丰富,直接和可解释的信息,如人类的视觉能力所证明。最近基于视力的人类姿势估计和行动分类技术可以提供有关人类行为的广泛信息[6]。驾驶员和行人意图预测可能是基准的一个很好的例子。感应周围环境是一个充分探索的机器人问题,可以通过对象/场景识别以及同时定位和映射等技术来实现[7]。将视觉行为与上下文信息合并以推断人们的意图仍处于最早的阶段[8],并提出了未解决的挑战。一种通用方法可以使用包括
本文提出了一种以人为本的可穿戴技术的方法,强调了审美和功能元素的整合以增强用户体验。该方法涉及分析用户反馈和行为,以确定关键需求和设计挑战,这将为可穿戴设备的迭代开发提供信息。原型工具将用于创建交互式模型,以促进最终部署之前用户测试和细化。提出的系统架构包括高级传感器模块,个性化建议的AI算法以及人体工程学设计原理,以确保舒适性和可用性。由用户反馈驱动的连续改进循环将指导硬件和软件组件的完善,以确保设备满足不断发展的用户期望。此外,该研究将利用成功可穿戴设备的案例研究来说明最佳实践,从而探索美学和功能之间的平衡。这种方法旨在创建不仅在技术上熟练而且与用户偏好和需求深度保持一致的设备,最终促进了更大的采用和持续的参与。
该文章的此版本已被接受以供出版,在同行评审(适用)之后(如果适用),并且受Springer Nature的AM使用条款的约束,但不是记录的版本,并且不反映后接受后的改进或任何更正。记录版本可在线获得:https://doi.org/10.1038/s41564-024-01656-3
几项研究探讨了接受SCT的成年患者的锻炼和加强计划的使用(Baumann等,2010,2011; Coleman等,2008; Dimeo等,1997; Dimeo等,1997; Hacker等,2017; Hacker等,2017; jurdi et al。,2021; Knols et al。; knols et al。 Wiskemann&Huber,2008)。先前的研究探索了各种运动和加强干预措施,包括移动,骑自行车测量计,抵抗训练和个性化的物理疗法。与随机或非随机对照患者相比,这些研究主要报道了接受运动疗法的患者的身体性能和生活质量以及减少疲劳的改善。例如,Baumann等。(2010)对64例接受同种异体或ASCT的患者进行了试验,这些患者在移植过程中随机接受剧烈运动或被动疗法。在物理治疗师的监督下,运动组骑着自行车测量计或每天两次行走20分钟。骗局组接受了按摩,协调培训或伸展运动。在出院时,在经过改良的世界卫生组织评估中,运动组在耐力测试中表现出最小的下降(2%),而对照组与基线相比损失了27%的耐力。研究中使用的深入监督耐力训练和设备才是可能仅是因为移植设施的大量投资(Baumann等,2010)。锻炼计划可能需要大量资源,而SCT集合中通常不可用,其中患者护理主要集中于管理剂量密集型治疗的并发症。
摘要 在便携式睡眠技术快速发展的背景下,前所未有的机遇与复杂的新挑战并存。研究人员、临床医生和技术开发人员可以通过合作并加深对良好和不良睡眠者与这些技术的关系的理解而获益匪浅。本次会议将重点介绍对加拿大代表性样本中使用便携式睡眠技术的调查数据。会议将概述一些关于在研究中整合不同级别的活动记录仪设备的建议。会议还将讨论一些新型可穿戴和近距离睡眠追踪器的临床应用。会议将规划加拿大睡眠研究联盟正在投资的计划,以激发对潜在合作领域的思考。
5 南京大学化学化工学院,生命分析化学国家重点实验室,南京 210023,中国 *通信地址:yuehe.lin@wsu.edu (YL);josephwang@ucsd.edu (JW);wenleizhu@nju.edu.cn (WZ) 收稿日期:2023 年 3 月 27 日;接受日期:2023 年 5 月 17 日;在线发表日期:2023 年 5 月 31 日;https://doi.org/10.59717/j.xinn-mater.2023.100023 © 2023 作者。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。引用:Ding S.、Yin L.、Lyu Z. 等人,(2023 年)。单原子材料赋能的可穿戴微电网。创新材料 1(2),100023。可穿戴微电网是一种集成了能量收集、存储和调节模块以及传感器的可穿戴系统,具有支持人类医疗保健的潜力。然而,可穿戴微电网由于成本高、性能、稳定性和生物相容性有限而尚未实现可行性,等待重大突破,特别是在材料科学领域。单原子材料 (SAM) 是最有前途的材料前沿之一,它可以克服上述缺点,并在各种收集器、储能设备和可穿戴传感器中提供许多额外的优势。在此,我们讨论了在可穿戴设备中使用 SAM 的潜力,以满足构建实用的能源自主可穿戴微电网的需求,以实现扩展的全面自我监控和人机界面。