摘要 — 当涉及过载等情况时,由按需设备(包括辅助服务器)组成的关键基础设施就会发挥作用。按需服务器和设备需要智能管理解决方案,这些解决方案是人工智能物联网 (AIoT) 不可或缺的一部分。这项工作将 AIoT 视为移动物联网 (M-IoT) 和人工智能的结合,需要立即响应、辅助支持系统和计算资源。在共享信息时,AIoT 中的隐私始终是一个问题,因为入侵者可以窃听系统的设置。本文使用渗透计算范式,该范式可以推导策略来决定通过 AIoT 中的最佳和隐私感知资源管理共享服务的方法。安全竞争建立在配置奖励之上,有助于实现隐私设计。这项工作的贡献通过理论分析和数值模拟来表达。
抽象自动化量子密钥分布(QKD)系统对于准确评估窃听信息至关重要。,我们使用基于平面光波电路(PLC)的混合不对称法拉第 - 米切尔森干涉仪(AFMI)开发并验证QKD的极敏感性的时间键解码器芯片。与现有的基于芯片的QKD作品相比,该方案可以内在补偿量子信号的极化扰动,从而在任意温度下工作。我们以1.25 GHz的时钟速率在实验桶QKD系统中实验验证芯片,并在50 kmfer通道上以优化的分析模型在50 kmfer通道上获得1.34 Mbps的平均安全密钥速率(SKR)。带有随机极化干扰的量子位误差和SKR的稳定变化表明,基于PLC的AFMI可用于开发自稳定QKD系统。
PAN 是一种无线通信系统,允许人体上和人体附近的电子设备通过近场静电耦合交换数字信息。信息通过调制电场和静电(电容)耦合皮安电流进入人体来传输。人体将微小电流(例如 50 pA)传导至安装在身体上的接收器。环境(“室内地面”)为传输信号提供返回路径。使用低频载波(例如 330 kHz),因此不会传播能量,从而最大限度地减少远程窃听和邻近 PAN 的干扰。数字信息使用带正交检测的开关键控来传输,以减少杂散干扰并提高接收器灵敏度。使用模拟双极斩波器和积分器作为正交检测器,并使用微控制器进行信号采集,实现了低成本(<20 美元)半双工调制解调器。PAN 中使用的技术可以集成到定制 CMOS 芯片中,以达到最小尺寸和成本。
PAN 是一种无线通信系统,允许人体上和人体附近的电子设备通过近场静电耦合交换数字信息。信息通过调制电场和静电(电容)耦合皮安电流进入人体来传输。人体将微小电流(例如 50 pA)传导至安装在身体上的接收器。环境(“室内地面”)为传输信号提供返回路径。使用低频载波(例如 330 kHz),因此不会传播能量,从而最大限度地减少远程窃听和邻近 PAN 的干扰。数字信息使用带正交检测的开关键控来传输,以减少杂散干扰并提高接收器灵敏度。使用模拟双极斩波器和积分器作为正交检测器,并使用微控制器进行信号采集,实现了低成本(<20 美元)半双工调制解调器。PAN 中使用的技术可以集成到定制 CMOS 芯片中,以达到最小尺寸和成本。
我们提出了一个可解决的量子达尔文主义模型来编码过渡 - 量子信息如何在单一动力学下的多体系统中传播的方式突然变化。我们考虑在扩展的树上的随机Clifford电路,其输入量子位与参考纠缠在一起。该模型具有一个量子达尔文主义阶段,其中可以从任意的输出量子位的任意小部分中检索有关参考的经典信息,而该检索不可能是不可能的。这两个阶段通过混合相和两个连续过渡分开。我们将确切的结果与两次复制的计算进行了比较。后者产生类似的“退火”相图,该图也适用于具有HAAR随机单位的模型。我们通过求解环境在编码系统上窃听的修改模型来将我们的方法与测量诱导的相变(MIPT)联系起来。它只有一个尖锐的mipt,只能完全访问环境。
当今广泛使用的密码学的安全性可以通过“构造安全性”来保证,这意味着解密需要极端的质量计算能力。这使我们每天都可以安全地交换数据。然而,由于大规模量子计算机的出现以及将来的全新计算技术/数学算法,今天的加密法正在面临轻松解密的潜在威胁。尤其是,需要数十年保密的关键信息有“现在收获,稍后再结合”攻击的风险,在该攻击中,加密数据被窃听或获取,然后在将来开发新的计算技术时解密。这就是需要紧急响应的原因。正在开发两种新型技术来解决此问题。是“量词后公钥密码学”,具有相同的计算确定性,但具有数学结构,被认为很难通过当前已知的量子计算算法解密,并且现在正在实施和标准化。另一种类型是量子
PAN 是一种无线通信系统,允许人体上和人体附近的电子设备通过近场静电耦合交换数字信息。信息通过调制电场和静电(电容)将皮安电流耦合到体内来传输。身体将微小电流(例如 50 pA)传导到安装在身体上的接收器。环境(“室内地面”)为传输信号提供返回路径。使用低频载波(例如 330 kHz),因此不会传播能量,从而最大限度地减少远程窃听和邻近 PAN 的干扰。使用带正交检测的开关键控来传输数字信息,以减少杂散干扰并提高接收器灵敏度。使用模拟双极斩波器和积分器作为正交检测器,并使用微控制器进行信号采集,实现了低成本(<$20)半双工调制解调器。PAN 中使用的技术可以集成到定制 CMOS 芯片中,以达到最小尺寸和最低成本。
摘要 - 卫生馆的微型化和制造和发射的下沉成本正在将月球任务带入许多太空公司和机构的重点。然而,通过传统的射频频道系统,在长范围内实现了多维亚群岛上所需的数据速率。自由空间光学(FSO)通信提供紧凑,轻和低功率的替代方案,具有更高的数据吞吐量和更少的限制(例如,政府法规较少,渠道干扰,窃听。。。)。基于其长期传统的激光通信和新空间技术,德国航空航天中心(DLR)正在调查Seleniris,这是其Osiris计划的Moon-Ear-Eterth光学数据传输的微型终端。本文将分析将技术从经过飞行的低地轨道终端(例如Osiris4cubesat(O4C)[1])转移到Lunar Orbit的概念任务所需的必要改编。索引术语 - osiris,自由空间光学,立方体,月亮,激光通信,高数据速率,新空间
对称信息完整测量 (SIC) 是希尔伯特空间中优雅、著名且广泛使用的离散结构。我们引入了一个由多个 SIC 复合而成的更复杂的离散结构。SIC 复合结构定义为 d 维希尔伯特空间中的 d 3 个向量的集合,可以以两种不同的方式划分:划分为 d 个 SIC 和 d 2 个正交基。虽然当 d > 2 时,它们的存在似乎不太可能,但我们意外地发现了 d = 4 的明确构造。值得注意的是,这种 SIC 复合结构与相互无偏基具有密切的关系,正如通过量子态鉴别所揭示的那样。除了基本考虑之外,我们利用这些奇特的属性来构建量子密钥分发协议,并分析其在一般窃听攻击下的安全性。我们表明,SIC 复合结构能够在存在足够大的错误的情况下生成安全密钥,从而阻止六态协议的推广成功。
PAN 是一种无线通信系统,允许人体上和人体附近的电子设备通过近场静电耦合交换数字信息。信息通过调制电场和静电(电容)耦合皮安电流进入人体来传输。人体将微小电流(例如 50 pA)传导至安装在身体上的接收器。环境(“室内地面”)为传输信号提供返回路径。使用低频载波(例如 330 kHz),因此不会传播能量,从而最大限度地减少远程窃听和邻近 PAN 的干扰。数字信息使用带正交检测的开关键控来传输,以减少杂散干扰并提高接收器灵敏度。使用模拟双极斩波器和积分器作为正交检测器,并使用微控制器进行信号采集,实现了低成本(<20 美元)半双工调制解调器。PAN 中使用的技术可以集成到定制 CMOS 芯片中,以达到最小尺寸和成本。