对历史光学设备的批判性分析可以为“新媒体”产品的开发和含义做出宝贵贡献。墨尔本博物馆目前正在建设的虚拟室是一个虚拟/人工智能装置,由一个八屏 360° 背投立体显示系统组成。该技术建立在几个世纪的立体工具和沉浸式环境的成功基础之上。特别是,立体镜、Kaiserpanorama、Cosmorama 和 Géorama 被视为将新兴技术置于社会文化框架和视觉产品消费历史中的先驱。
cassaFLOW 级联用于氨基酸的立体选择性合成 TECHNISCHE UNIVERSITEIT DELFT 36 NL 2.378.694,25 €
抽象背景:大脑活检是至关重要的诊断干预措施,为治疗和预后提供了宝贵的信息,但很大程度上取决于高精度和精度。我们假设,通过使用移动单元的术中CT检查,通过基于神经验证的无框架立体定位和MRI引导的轨迹计划的组合,可以实现无缝集成的方法,得出最佳目标准确性。方法:我们分析了7个立体定向活检轨迹,用于各种深处的位置和不同的患者位置。在刚性固定后,使用计划MRI图像进行自动图像融合,使用移动CT单元进行术中术前扫描,并使用原位进行活检套管进行验证,以验证确定的目标位置。然后,我们评估了径向轨迹误差。结果:术中扫描,手术,MRI和CT图像的计算机化合并以及轨迹计划是可行的,在所有情况下都没有困难且安全。我们在60±12.3 mm的轨迹长度下达到了0.97±0.39 mm的径向轨迹偏差(平均值±标准偏差)。不需要因目标不准确而重新定位活检套管。结论:使用移动CT单元与无框神经验证指导的立体定位和基于术前MRI的轨迹计划结合使用的术中验证是可行的,安全且高度准确的。关键词:立体定向神经外科,图像指导,术中CT,脑活检该设置实现了深度脑损伤的单毫米精度和直接检测术中并发症的检测,并不依赖于专用的手术室,并且无缝地集成到常见的立体定位过程中。
血源性播散是导致脑转移的最常见转移方式;这意味着即使只看到一个颅内病变,整个大脑都可能受到微转移性疾病的影响。 [2] 最近,人们对这一前提产生了怀疑,导致一种反向哲学的出现,认为在某些患者中,颅骨内的疾病仅限于少数转移瘤,这种状态称为寡转移。 [2] 治疗脑转移常用的两种主要方法是对症干预和治疗干预。对症治疗通常包括使用皮质类固醇来减少肿瘤周围肿胀和使用抗惊厥药来防止癫痫复发。脑转移的治疗方案包括手术干预、全脑放射治疗 (WBRT)、立体定向放射外科 (SRS) 和化疗。多名患者会接受多种治疗方案的组合,治疗决策必须基于多个方面,例如患者的年龄和功能能力、初始肿瘤的类型、脑外疾病的程度、之前的治疗方法以及脑内病变的数量。[6]
1。术前:a)。与术前的护理计划扣押护理计划一起使用的护理计划护理计划和护理计划,该计划具有潜在或实际神经系统状况的儿童。b)。确保术前成像已在Chi入院之前在博蒙特医院完成。c)。包括术前血液(FBC,U&E,CRP,COAG,Group&Hold),MRSA拭子和结果已进行,并获得结果。d)。和神经外科团队的处方前一周,鼻鼻鼻软膏一周。e)。在术前规定的情况下,使用儿童的抗癫痫药(AED)。护理人员应熟悉癫痫持续方案,并确保在病房中获得抗惊厥的紧急药物。患者特定的救援药物和规定的规定,并陪同患者跨现场转移到博蒙特医院。f)。可能需要将AED水平放在前OP中来监测AED血液药物水平。咨询神经病学顾问Ronan Kilbride博士,以确定可能需要获得的频率。g)。PIV套管访问在根据PIV插管护理计划提供的入学和护理方面获得的访问(参考第34号)H)。癫痫发作。与Kilbride博士或神经外科团队讨论有关癫痫管理或药物管理的担忧。pews参数也应根据需要进行讨论和修改。i)。在博蒙特医院将插入Seeg电极的插入。请遵守此过程的程序路径文档。术后CT扫描也将在Beaumont医院立即完成Seeg探测器插入后,以确保在转移回Temple Street的Chi之前正确放置电极。i)。确保所有相关的MDT利益相关者均链接到前OP和基线/术前评估。
脑转移瘤是中枢神经系统最常见的恶性肿瘤 ( 1 )。脑转移瘤的发病率是原发性中枢神经系统 (CNS) 脑肿瘤的 10 倍,占所有癌症患者的 20% 至 40%,在美国每年有超过 100,000 名新患者 ( 2 – 4 )。随着治疗方法的改进、无神经系统症状患者筛查的增加以及患者寿命的延长,脑转移瘤的发病率持续上升。长期以来,血脑屏障一直对传统化疗药物进入脑部并有效治疗这些病变构成挑战。因此,迄今为止,主要治疗方法包括手术、立体定向放射外科 (SRS) 和全脑放射治疗;全身疗法的作用有限 ( 5 )。目前,脑转移瘤患者的治疗方案包括按症状分层,以及按数量(单个病灶、寡转移、多转移)和大小分层疾病负担(6、7)。有症状且体能状态较差的患者通常仅接受最佳支持治疗即可获益(8)。有症状且体能状态良好的患者除了接受全身治疗(传统化疗、免疫疗法和/或靶向分子疗法)外,还可能接受手术和/或放疗(SRS、低分割放射外科或全脑放疗),具体取决于转移瘤的数量和大小
由于电极破裂而导致的脑内出血是最常见的并发症,每316个电极的发生率为1 [4,5]。为了防止它,神经外科医生必须仔细计划电极轨迹,以避免相交的血管。神经影像学检查对于在轨迹计划中揭示血管解剖学至关重要。Gadolinium增强的T1加权磁共振(T1-GD)是Seeg计划中最确定的技术之一,鉴于其可忽略不计的并发症率,可用性和易于性[6-9]。几种技术,例如血管造影或静脉磁共振成像(磁共振血管造影/磁共振造影),飞行时间成像,易感性加权成像或计算机断层造影术,为检测血管提供了卓越的敏感性,可用于检测血管,并在T1-gd [10-13]中均与SEEG计划相同。最详细的血管可视化是通过数字减法血管造影(DSA)实现的,允许对亚毫米船的明显可视化[14,15]。然而,这种技术的并发症发生率与使用动脉导管和高剂量的辐射有关[16]。最近的出版物强调了将DSA纳入SEEG工作流程[14,17-20]的好处,但不可忽略的并发症率使其常规用于易涉及的有争议[21-24]。