高压氧疗法 (HBOT) 在临床应用中利用 100% 的高气压氧气。HBOT 已被证明是多种临床和病理疾病的有效辅助治疗方法。HBOT 的治疗结果基于增加组织氧合或提高氧生物利用度的生理效应。HBOT 目前在伤口愈合、热或辐射烧伤以及组织坏死等疾病中的指征表明其在促进再生过程中发挥作用。各种研究表明,HBOT 在血管化、血管生成和胶原蛋白生成增强中发挥作用。个体的再生能力受环境和遗传因素的影响。此外,不同类型组织的再生能力各不相同,并且这种能力会随着年龄的增长而下降。HBOT 通过改变基因表达、延缓细胞衰老和协助增加端粒长度来在基因水平上影响生理过程。从组织再生到改善认知功能等各种适应症的积极结果表明它在再生和抗衰老治疗方面具有巨大的潜力。
摘要:肝细胞癌 (HCC) 占原发性肝恶性肿瘤的 90%,是癌症相关死亡的主要原因之一。在过去的 15 年中,HCC 的分子图景已被揭示,并鉴定出属于六大生物学通路的肝癌主要驱动基因,例如端粒维持、Wnt/b-catenin、P53/细胞周期调控、氧化应激、表观遗传修饰因子、AKT/mTOR 和 MAP 激酶。遗传和转录组数据的组合构成了与风险因素、病理特征和预后密切相关的各种 HCC 亚类。然而,尚未实现临床实践的转化,主要是因为最常见的突变基因无法用药。此外,从单个组织样本的分析得出的结果可能无法充分捕捉肿瘤内和肿瘤间的异质性。循环肿瘤 DNA (ctDNA) 分析已广泛应用于其他类型的癌症,用于系统性治疗下的早期诊断、预后和监测,以确定原发性和继发性耐药机制。本综述旨在描述有关 HCC 分子图谱的最新数据,并讨论 ctDNA 未来如何用于 HCC 检测和管理。
Annelid发育中的祖细胞:卵母细胞端粒细胞是Annelid胚胎中的大细胞,它们不对称地分裂以形成许多较小的爆炸细胞,然后将其增殖并分化为节段组织。这些细胞在Annelids的发展中起着至关重要的作用,在水ches和其他寡头中详细研究了细胞细胞。在第二轮后,五对卵母细胞是从d象限的大粒子中指定的。每对产生外胚层或中胚层组织,四对形成外胚层组织,一对形成中胚层组织。端粒具有两个不同的细胞质结构域:端质和叶片质。端质包含核,核糖体,线粒体和其他细胞器,而卵黄质主要由蛋黄血小板组成。在细胞分裂后,只有端质被传递到子干细胞上。O和P型蛋白细胞是从形成等效组的两个相同的前体中指定的。来自周围细胞的信号决定了雌胆母细胞的命运及其后代的命运,Q Bandlet与相邻的O/P Bandlet之间的相互作用引起了P命运。在某些物种中,例如helobdella triserialis,覆盖细胞的临时上皮在诱导命运中起作用。实验结果表明,在某些蠕虫中,O和p没有对等效组,而P谱系在其出生时从O/P Protelblast阶段开始。在水ech中,卵母细胞是引起爆炸细胞的细胞。在其他物种(例如helobdella ustensis)中,其他信号促进了P谱系分化,包括来自Q谱系细胞的骨形态蛋白分子信号传导。有四种类型的卵母细胞:N和Q,每个片段贡献了两个爆炸细胞; O,P和M,每个段覆盖一个分段边界的一个爆炸细胞。随着开发的进展,每个包含64个爆炸细胞的N和Q带子都滑过O,P和M带子,每个Bandlet都包含32个细胞。此动作允许在所有带子进入完整寄存器之前指定每个带子中的分段边界。卵母细胞负责产生水ech体的不同部分。N和Q型母细胞每段贡献两个爆炸细胞,一个用于前半部分,一个在后半部分。O,P和M型蛋白细胞贡献一个跨越节段边界的爆炸单元。水ches中的分割过程很复杂,涉及卵母细胞的运动和不同段的形成。对卵母细胞的研究为这组生物体的发展和进化机理提供了宝贵的见解。
脑老化是衰老的主要决定因素。随着人口老龄化,神经退行性疾病的患病率也在增加,从而给个人和社会带来经济和社会负担。个体脑老化的速度受遗传、表观遗传和产前环境因素的影响。需要生物脑老化的生物标志物来预测个体老化轨迹和与年龄相关的神经系统损伤风险,以便制定早期预防和干预措施。我们回顾了预测个体脑年龄的体内生物标志物的最新进展。端粒长度和表观遗传时钟是与机械衰老过程密切相关的两个重要生物标志物,由于它们在个体内和个体间存在高度差异,因此对个体脑老化的确定性和预测准确性较差。整体认知功能和脑结构的表型相关生物标志物在个体层面上与年龄有更密切的相关性。在胎儿和围产期,自主神经活动是脑发育的独特功能标志物。认知和结构生物标志物还具有很高的诊断特异性,可用于确定个体患神经退行性疾病的风险。
J. Sebastian Garcia-Medina, Karolina Sienkiewicz, S. Anand Narayanan, Eliah G. Overbey, Kirill Grigorev, Krista A. Ryon, Marissa Burke, Jacqueline Proszynski, Braden Tierney, Caleb M. Schmidt, Nuria Mencia-Trinchant, Remi Klotz, Veronica Ortiz, Jonathan Foox, Christopher Chin, Deena Najjar, Irina Matei, Irenaeus Chan, Carlos Cruchaga, Ashley Kleinman, JangKeun Kim, Alexander Lucaci, Conor Loy, Omary Mzava, Iwijn De Vlaminck, Anvita Singaraju, Lynn E. Taylor, Julian C. Schmidt, Michael A. Schmidt, Kelly Blease, Juan Moreno, Andrew Boddicker, Junhua Zhao, Bryan Lajoie, Andrew Altomare, Semyon Kruglyak, Shawn Levy, Min Yu, Duane C. Hassane, Susan M. Bailey, Kelly Bolton, Jaime Mateus, and Christopher E. Mason (2024) Genome and clonal hematopoiesis stability contrasts with immune, cfDNA,线粒体和端粒长度在短时间太空飞行中变化。精确临床医学。https://academic.up.com/pcm/article/7/1/pbae007/7642247
永生化细胞系对研究人员来说非常宝贵,因为它们可以无限增殖,从而可以培养多代。与寿命有限的原代细胞不同,永生化细胞系(也称为连续细胞系)可以避免伦理问题、提取困难、传代能力有限以及由于细胞来源不同而导致的结果不一致等挑战。实验室条件下的大多数细胞都面临海弗利克极限,即端粒随着每次分裂而缩短,导致衰老。永生化细胞系克服了这些限制,可以进行稳定的长期研究,同时无需重复分离和培养细胞,从而节省了研究的时间和资源。连续细胞系可以在体外无限增殖,为广泛的研究目的提供可持续和可重复的系统。这些细胞系为在细胞和分子水平上研究生物体提供了一个独特的平台,提供了全生物模型并不总是能够提供的见解。它复制了宿主的细胞和遗传同质性,同时最大限度地减少了体内系统固有的变异性。因此,人们越来越关注开发新的细胞系以支持更广泛的生物学研究。
2022 - 2026年NSF iOS核心计划的Co-Pi授予$ 799,773是否会对压力响应最大的弹性?测试挑战对行为,生理,表观遗传状态和健身的长期影响。与PI:Maren Vitousek(Cornell)和Co-Pi:Dan Ardia(Franklin&Marshall)2015 - 2017年康奈尔鸟类学博士学后研究预算$ 20,000应对不确定性:多重压力,氧化作用,氧化成本和野生的产妇影响。2013 - 2015 USDA NIFA博士后研究金研究预算 - co-PI:Andrea Townsend $ 52,200 $ 52,200野生鸟类的Jejuni传播的生态流行病学。2014 selma herr鸟类学研究奖$ 3,600放射性污染对氧化代谢和美国乌鸦生存的影响。2012 - 2014年NSF博士学位论文改进赠款 - co-PI:盖尔·帕特里克利(Gail Patricelli)$ 15,000,将终身过程与端粒动态联系起来:莺的信号,性别和衰老。2013年美国鸟类学家工会学生旅行奖$ 523 2012 UC Davis研究生研究旅行奖$ 1,000
RNA 干扰 (RNAi) 是一种基本调控途径,具有广泛的功能,包括调节基因表达和维持基因组稳定性。尽管 RNAi 在真菌界广泛存在,但众所周知的物种,如模型酵母酿酒酵母,已经失去了 RNAi 途径。到目前为止,还没有证据表明白色念珠菌中存在完全功能的 RNAi 途径,白色念珠菌是一种被世界卫生组织认为至关重要的人类真菌病原体。在这里,我们证明了广泛使用的白色念珠菌参考菌株 (SC5314) 在编码中心 RNAi 成分 Argonaute 的基因中含有失活错义突变。相比之下,大多数其他白色念珠菌分离株含有典型的 Argonaute 蛋白,预计该蛋白具有功能性和 RNAi 活性。事实上,使用高通量小RNA和长RNA测序结合无缝CRISPR/Cas9基因编辑,我们证明了活性白色念珠菌RNAi机制抑制了亚端粒基因家族的表达。因此,白色念珠菌中存在完整且功能性的RNAi通路,这凸显了在研究这种危险病原体时使用多种参考菌株的重要性。
鉴于Z-DNA的作用,鉴于其染色性质仍然具有挑战性。在这里,我们对在实验鉴定的Z-DNA形成序列(Z-lipons)上训练的DNABERT变形金刚算法进行全基因组审查。该算法对现有方法产生了较大的性能增强(F1 = 0.83),并实现了计算诱变,以实现基础替代对Z-DNA形成的影响。我们表明Z- iPons富含启动子和端粒,过度扎根定量性状基因座,用于RNA表达,RNA编辑,剪接和与疾病相关的变体。我们在许多正交数据库和定义的junction基序中进行了跨估算。令人惊讶的是,我们描述的许多效果可能是通过Z-RNA形成介导的。在Scarf2,Smad1和Cacna1转录本中鉴定了共享的Z-RNA图案,而非编码RNA中存在其他基序。我们为Z-RNA折叠提供了证据,该折叠通过替代krab域锌纤维蛋白的剪接来促进适应性免疫。对OMIM和推定的GNOMAD功能丧失数据集的分析表明,Z流iPon的重叠在8.6%和2.9%的Mendelian病基因中,Mendelian疾病基因的重叠,大大扩展了映射到Z- iPons的表型的范围。
染色体碎裂、染色体合成和染色体复合等现象被称为染色体再生,它们构成了新型的复杂重排,包括许多仅位于少数染色体区域的基因组改变。近十年来,这些现象的发现改变了我们对染色体异常的形成及其病因的认识。尽管这些新的灾难性机制各有特点,但它们通常发生在单个细胞周期内,并且它们的出现与基因组不稳定性密切相关。人们已经提出了各种能够产生染色体再生的非排他性外源性或细胞机制。然而,最近的实验数据揭示了两个主要过程,这两个过程在染色体有丝分裂分离出现缺陷后,可产生一系列细胞事件,从而导致染色体再生。这些机制包括整合分离染色体物质的微核的形成,以及由于端粒融合而导致染色体物质周围出现染色质桥。在这两种情况下,受损染色体物质的碎裂、修复和传递的细胞和分子机制与染色体再生相关的复杂染色体重排的特征一致。在本综述中,我们介绍了每种类型的染色体再生,并描述了实验模型,这些模型可用于验证染色体再生事件的存在,并更好地了解其形成和传递的细胞机制,以及它们对基因组稳定性和可塑性的影响。21