系统特点和雷达参数 • 发射器/接收器/处理器的双冗余通道,发生故障时可自动重新配置 • 固态发射器 • 使用最新一代信号和数据处理器处理和跟踪信号 • 符合欧洲空中导航安全组织和国际民航组织等国际标准 • 本地和远程控制和监督系统,具有最高效率的人机界面,使用彩色显示器,在工作站执行 • 智能 BITE,内置测试设备,具有诊断远程控制和性能监督功能 • 易于配置以适应客户需求
摘要。普通微分方程的多项式和非分解系统的二二次化在多种学科中,例如系统理论,流体力学,化学反应建模和数学分析。二次化揭示了模型的新变量和结构,该变量和结构可能更容易分析,模拟,控制并提供了方便的学习参数化。本文提出了新的理论,算法和软件功能,用于非自治odes的二次化。我们根据输入函数的规律性提供存在结果,因为可以通过二次化获得二次双线系统的情况。我们进一步发展存在结果和一种算法,该算法概括了具有任意维度的系统的二次化过程,该系统在尺寸增长时保留了非线性结构。对于此类系统,我们提供维度不合时宜的二次化。一个示例是半消化的PDE,当离散化大小增加时,非线性项在象征性上相同。作为这项研究实际采用的重要方面,我们将QBEE软件的功能扩展到具有任意维度的ODES和ODES的非自治系统。我们提供了以前在文献中报道的ODE的几个示例,在此,我们的新算法找到了比先前报道的提升转换的四倍体ode系统。我们进一步强调了二次化的重要领域:减少阶模型学习。太阳风示例突出了这些优势。该区域可以通过在最佳提升变量中工作而受益匪浅,其中二次模型提供了模型的直接参数化,这也避免了非线性项的额外超重还原。
Miller 先生宣布召开第 26 次 PNT 咨询委员会 (PNTAB) 会议。PNT 代表全球定位系统 (GPS) 和其他类似的全球导航卫星系统 (GNSS) 所提供的重要服务。他感谢现场和在线参会的各位,并指出演讲将被录制并可在 www.gps.gov/advisory 上获取。GPS 是一种全球公用事业。委员会成员与美国政府合作,确保 GPS 服务对全社会保持稳健和可靠。PNTAB 于 2007 年开始运营,Miller 先生对美国国家航空航天局 (NASA) 空间通信和导航 (SCaN) 计划的 Badri Younes 先生多年来对委员会的赞助表示感谢。PNTAB 由 Brad Parkinson 博士等资深成员和一些最近加入的成员组成。所有成员都是国际公认的专家。PNTAB 的任务是确保真正听到用户的声音。委员会主席为美国海岸警卫队司令(已退休)泰德·艾伦上将和 GPS 项目首席设计师布拉德·帕金森博士。米勒先生宣布会议已达到法定人数。
1. 电池燃料と二次电池のシテム最适化について ・ 本研究において燃料电池と二次电池のshisutemubaransuが重要である。 ・今后、特にエネルギー(kWh)のみならず、室内无人导航走体の使用方法を想定し
系统特点和雷达参数 • 发射器/接收器/处理器的双冗余通道,发生故障时可自动重新配置 • 固态发射器 • 使用最新一代信号和数据处理器处理和跟踪信号 • 符合欧洲空中导航安全组织 (EUROCONTROL) 和国际民航组织 (ICAO) 等国际标准 • 本地和远程控制和监督系统,具有最高效率的人机界面,使用彩色显示器,在工作站执行 • 智能 BITE,内置测试设备,具有诊断远程控制和性能监督功能 • 易于配置,以适应客户需求
珠宝 - 沃尔玛珠宝网络旨在高效、安全、高效地将高价值的小件物品从供应商运送到沃尔玛美国商店。RX - 沃尔玛处方药网络是一个受到严格监管的供应链,负责管理所有处方药到沃尔玛美国商店的接收和分发。眼镜 - 沃尔玛眼镜网络为整个国家提供服务,向沃尔玛美国视力中心、山姆视力中心、沃尔玛光学实验室(包括墨西哥的分店)和其他全球分店分发处方眼镜。
当今民用运输机的高升力系统由使用阀控恒排量液压马达的动力控制单元驱动。这一概念导致阀块复杂,伴随高功率损耗以实现离散速度控制、定位和压力维持功能。可变排量的二次控制液压马达概念可减少流量消耗而不会造成压力损失,并降低阀块设计的复杂性。不是用阀门控制液压马达的流量,而是通过改变排量来调整扭矩以适应负载。电子控制电路允许灵活的数字控制概念,例如与负载无关的速度控制、压力维持功能、平稳的启动顺序和机械传动系统的连续定位。本文介绍了当今动力控制单元的概念、二次控制液压马达的原理和数学模型以及级联控制回路结构。提出了一种使用二次控制液压马达的动力控制单元的新型液压概念。理论、模拟和实验结果显示了负载下的典型操作顺序以及与传统系统的功率需求的比较。
电动汽车 (EV) 是低碳排放和可持续交通未来的重要组成部分。电动汽车在交通运输中的应用正在迅速增长,全球电动汽车数量将从 2012 年的 12 万辆增加到 2021 年的 600 多万辆 [1]。目前电动汽车最主要的储能技术是锂离子电池 (LIB)。由于锂库存的损失、活性材料的损失以及循环过程中固体电解质中间相的形成,电动汽车 LIB 会随着时间的推移和使用而退化,表现为可用容量的损失、内阻的增加,最终导致设备可用能量和功率的降低 [2]。当 LIB 在电动汽车运行中无法再提供令人满意的性能时,它们就会退出使用。退役的电动汽车锂离子电池可以重新用作“二次生命”的储能系统 (ESS),用于电网 [3],支持间歇性可再生能源生产源,如太阳能光伏 (PV) 和风力涡轮机,以满足低碳排放电网的电力负荷消耗。二次使用后,锂离子电池可以被拆卸并回收成新的锂离子电池 [4],形成锂离子电池的循环、低浪费经济 [5]。电网规模储能系统的需求和退役电动汽车锂离子电池的二次生命供应量都将扩大,尤其是随着电动汽车的大规模采用和电网电气化。到 2030 年,二次生命锂离子电池的供应量预计将超过每年 200MWh,以满足预计每年 183MWh 的电网规模储能系统需求 [6]。
二次谐波生成:半导体电介质接口的强大非破坏性表征技术 Irina Ionica a 、Dimitrios Damianos a 、Anne Kaminski-Cachopo a 、Danièle Blanc-Pélissier b 、Gerard Ghibaudo a 、Sorin Cristoloveanu a 、Lionel Bastard a 、Aude Bouchard a 、Xavier Mescot a、Martine Gri a、Ming Lei c、Brian Larzelere c 和 Guy Vitrant aa Univ。格勒诺布尔阿尔卑斯,CNRS,格勒诺布尔-INP,IMEP-LAHC,38000 格勒诺布尔,法国 b INL-UMR 5270,里昂国立应用科学学院,7 avenue Jean Capelle,69621 维勒班,法国 c FemtoMetrix,1850 East Saint Andrew Place,加利福尼亚州圣安娜 92705,美国。二次谐波产生 (SHG) 被证明是一种非常有前途的介电体-半导体界面表征技术,因为它灵敏、无损,可在晶圆处理的不同阶段直接应用于晶圆。该方法基于非线性光学效应,测量包含介电体-半导体界面处“静态”电场的信号,该信号与氧化物电荷 Q ox 和界面态密度 D it 直接相关。从 SHG 测量中提取 Q ox 和 D it 的一般方法需要 (i) 根据通过经典电学方法获得的参数进行校准和 (ii) 建模以捕捉影响 SHG 信号的光传播现象。在本文中,我们基于对如何利用 SHG 进行半导体电介质表征的最新进展的回顾来讨论这些问题。简介半导体上电介质堆栈在微纳电子、光伏 (1)、图像传感器 (2)、生物化学传感器等许多应用领域的设备中无处不在。在每种情况下,界面的电质量对设备的性能都有很大的影响。通常使用两个参数来确定这种界面的电质量:固定氧化物电荷密度 Q ox 和界面态密度 D it 。大多数时候,这些参数是通过电测量(例如电流、电容、噪声 (3))获取的,然后采用适当的提取方法并在专门制造的测试设备上实施(例如:金属氧化物半导体 - MOS 电容或晶体管)。一些其他方法可以直接在晶圆级实施,而无需任何额外的测试设备制造步骤,例如:半导体的电晕-开尔文特性 (4)、通过光电导或光致发光衰减测量进行的载流子寿命提取 (5)。除了无需任何额外步骤即可直接在晶圆上进行探测的可能性之外,选择最适合的测量方法的标准还包括灵敏度、非破坏性、区分 D it 和 Q ox 的能力、提供高空间分辨率的能力。可以满足所有这些标准的最新技术是二次谐波产生 (SHG) (6),基于非线性光学效应。
