伊朗德黑兰Tandis医院泌尿外科系的泌尿外科介绍了与量子力学的基础知识兼容的一般物理信息信息的一般概念,并将香农熵作为特例。这种物理信息的概念导致了二进制数据矩阵模型(BDM),该模型预测了量子力学,一般相对论和黑洞热力学的基本结果。研究了模型与全息,信息保护和Landauer原则的兼容性。由于BDM得出了“位信息原理”后,得出了普朗克,de Broglie,Bekenstein和质量能量等价的基本方程。k eywords信息的物理理论,二进制数据矩阵模型,香农信息理论,位信息原理1。构造信息意味着一系列不可衡量的概念或可测量数量的数据。物理学中可测量信息的通常概念调用了香农熵和信息的主题。克劳德·香农(Claude Shannon)在他的开创性论文[1]中发展了信号传递的数学理论[2]。他否认了交流和相关信息理论的语义方面。根据他的理论,该信息是指减少不确定性并等于传达信息的熵的机会。他从第二种热力学定律[2],[3]中得出了熵的想法,并得出结论,信息的信息可以通过其可预测性来衡量,其可预测性越小,其携带的信息越多[2],[3]。很明显,香农对信息的定义不是唯一的,仅适合其工程要求[2],[3]。在这个信息概念中,数据的来源,渠道和接收器是通信工程的关键组成部分。香农熵(信息)仅与给定系统的统计属性有关,与系统状态的含义和语义内容无关[5]。正如他在开创性文章中强调的那样,沟通和相关信息内容的含义与工程问题无关[1]。随后,围绕着身体和生物学信息的香农概念出现了一些批评[3]。信息独立于其含义的概念是Mackay和其他人宣布的主要批评的主题[3],[4]。随后尝试为形式的信息理论增加语义维度,尤其是对香农理论[5] - [7]。香农的理论与单个信息无关,而是源消息的平均值[8]。尽管物理信息基本上与物理可测量的数量有关,但当前的物理信息概念仍然是香农引入的相同定义,并且似乎不足以用于物理系统。在Bruckner和Zeilinger的最新作品中提醒了这[9]。他们的主张主要原因是量子力学中的测量问题。换句话说,没有确定的真实
量子密码学中一个尚未解决的主要问题是是否有可能混淆任意量子计算。事实上,即使在经典的 Oracle 模型中,人们也可以自由地混淆任何经典电路,但关于量子混淆的可行性仍有许多需要了解的地方。在这项工作中,我们开发了一系列新技术,用于构建量子态混淆器,这是 Coladangelo 和 Gunn (arXiv:2311.07794) 最近在追求更好的软件版权保护方案时形式化的一个强大概念。量子态混淆是指将量子程序(由具有经典描述的量子电路 𝐶 和辅助量子态 | 𝜓 ⟩ 组成)编译成功能等价的混淆量子程序,该程序尽可能隐藏有关 𝐶 和 | 𝜓 ⟩ 的信息。我们证明了我们的混淆器在应用于任何伪确定性量子程序(即计算(几乎)确定性的经典输入/经典输出功能的程序)时是安全的。我们的安全性证明是关于一个高效的经典预言机的,可以使用量子安全不可区分混淆来启发式地实例化经典电路。我们的结果改进了 Bartusek、Kitagawa、Nishimaki 和 Yamakawa (STOC 2023) 的最新工作,他们还展示了如何在经典预言机模型中混淆伪确定性量子电路,但仅限于具有完全经典描述的电路。此外,我们的结果回答了 Coladangelo 和 Gunn 的一个问题,他们提供了一种关于量子预言机的量子态不可区分混淆的构造,但留下了一个具体的现实世界候选者的存在作为一个悬而未决的问题。事实上,我们的量子状态混淆器与 Coladangelo-Gunn 一起为所有多项式时间函数提供了“最佳”复制保护方案的第一个候选实现。我们的技术与之前关于量子混淆的研究有很大不同。我们开发了几种新颖的技术工具,我们期望它们在量子密码学中得到广泛应用。这些工具包括一个可公开验证的线性同态量子认证方案,该方案具有经典可解码的 ZX 测量(我们从陪集状态构建),以及一种将任何量子电路编译成“线性 + 测量”(LM)量子程序的方法:CNOT 操作和部分 ZX 测量的交替序列。
生成模型一直是机器学习研究中特别受关注的一个领域,成功的模型架构极大地改进了生成模型,包括变分自编码器 (VAE)、生成对抗网络 (GAN) 和可逆神经网络 (INN) [1-3]。除其他应用外,生成模型在事件生成中的应用也得到了广泛研究 [4-6]。与马尔可夫链蒙特卡洛 (MCMC) 技术 [7-11] 相比,生成模型的优势不仅限于提高推理速度,而后者迄今为止已成为领先的 LHC 模拟和解释方法。此外,生成模型可以进行端到端训练,从而实现更全面的应用,如展开 [12-14]、异常检测 [15-19] 等等 [20]。然而,这些神经网络 (NN) 的参数空间巨大,使其能够模拟复杂的交互,但这也导致对计算资源的需求巨大。流行的 NN 架构的规模早已达到计算可行性的边界。量子机器学习 (QML) 将量子计算的强大功能引入现有的机器学习基础,以建立并利用量子优势,从而实现量子算法独有的性能提升。虽然基于门的量子计算与经典计算有很大不同,但已经构建了许多与上述经典生成网络等效的模型,包括量子自动编码器 [ 21 ] 和量子 GAN [ 22 – 27 ]。值得注意的例外是 INN [ 28 , 29 ],它们尚未转移到 QML 领域。此类网络将成为量子神经网络 (QNN) 阵列的理想补充。虽然经典 INN 中雅可比行列式的可处理性使它们能够执行密度估计,这从本质上防止了模式崩溃,但通常无法有效地计算完整的雅可比矩阵 [ 30 ]。 INN 中完全可处理的雅可比矩阵(QNN 可用)将允许高效学习主要数据流形 [31-34],为可解释的表示学习和对底层过程的新洞察开辟机会。基于耦合的 INN 架构已通过经验证明对消失梯度问题更具弹性 [28],这使它们可以直接受益于具有许多参数的深度架构。然而,到目前为止列出的许多 INN 应用已经需要大量的训练资源。目前的研究表明,量子模型可以避免这种对巨大参数空间的需求。它们在表达力方面胜过常规 NN,能够用少得多的参数表示相同的变换 [35-39]。这一理论基础得到了几个专门构建的 QML 电路实例的支持,这些电路为专门设计的问题提供了比经典解决方案更有效的解决方案 [ 40 – 43 ]。QNN 已经成功应用于相对有限的高能物理问题 [ 21 , 25 , 44 – 46 , 46 – 51 ] 以及非 QML 方法 [ 52 – 56 ]。然而,据我们所知,尚未尝试构建可逆 QNN,该 QNN 可通过其可逆性用作生成任务的密度估计器。通过这项工作,我们旨在填补与经典 INN 量子等价的剩余空白,开发量子可逆神经网络 (QINN)。我们展示了如何将 QNN 流程中的每个步骤设计为可逆的,并展示了模拟网络估计分布密度的能力。作为原理证明,我们将我们的模型应用于最重要、研究最多的高能物理过程之一的复杂模拟 LHC 数据,pp → Z j → ℓ + ℓ − j,