在这项研究中,通过高能机械铣削随后进行了热处理,合成了一种新型的SIO 2 /NBO X复合材料,旨在探索其作为环境修复的吸附剂的有效性。使用X射线衍射(XRD),X射线荧光(XRF),氮吸附 - 吸附等温线,热力计分析(TGA),傅立叶型红外光谱(FTIR)和扫描电子显微镜(SEM)(SEM)进行彻底表征。XRD分析证实了SIO 2 /Nbox复合材料的无定形性质,与SI相比,NB的显着存在(81.1%)(15.8%),如XRF分析所示。在水溶液中使用亚甲基蓝(MB)染料进行了吸附研究,评估受控条件下的吸附能力和动力学。该复合材料表现出快速吸附能力,遵循伪一阶动力学模型,在短时间内达到39.32 mg g -1。Langmuir等温模型拟合了吸附数据,表明最大容量为16.7 mg g -1。这些发现突出了SIO 2 /NBO X作为去除染料的有效吸附剂的潜力,这有助于环境友好的废水处理解决方案。
最近,由于它们在不同的领域中的应用,例如在催化剂,超级电容器,电容器,电池和其他储能系统中,因此高级材料引起了极大的兴趣[1-3]。21世纪的许多前进技术,例如电动汽车(和混合动力),便携式电子设备和可再生能源系统,推动了对高性能储能系统的需求[4]。对可加工,轻巧,灵活的储能材料的需求不断增长,这激发了学术界和行业的研究人员开发和制造新材料,这些材料可根据目标应用程序(包括环境应用程序)提供出色的特性[5,6]。基于高级材料在几种应用中的不同潜力的基础上,该特刊旨在介绍新的高级材料中最新的最新技术,以解决研究人员在此领域中针对许多应用程序的各种具有挑战性的问题,尤其是用于存储能源。在本期中,我们提出了12篇论文,其中包括一项出色的评论“可持续生物量活性碳作为电池和超级电容器的电极 - 一个迷你审查”和一篇沟通文章。在本期特刊中,我们介绍了最新的进步,这些进步涉及活跃研究人员在创新的高级材料和混合材料方面的新颖和最先进的主题,不仅涉及它们的合成,准备和表征,而且尤其是专注于具有出色表现的此类材料的应用。本期特刊已针对不同学科的读者。全面和基础研究已在本期特刊中发表,剑桥大学研究人员的第一个贡献为“碳基于黑色 - 盖烯的多模式 - 二苯基二甲基烯纳米复合材料的非等热结晶动力学”。在这项工作中,Ahmad等人。报告了基于结晶动力学的碳黑磷酸增强高密度聚乙烯(HDPE)复合材料的发现[7]。在这项工作中,使用非等温条件的纤维(碳黑 /石墨烯)从0.1到5 wt。%的不同比例制备了不同类型的复合材料。发现石墨烯含量以及冷却速率对结晶行为(PE-G纳米复合材料的非等温度)产生了很大的影响。发现,随着选定加固的冷却速率降低(例如,石墨烯含量),PE-G相对峰结晶温度得到了提高。以指定的冷却速率,发现随着石墨烯浓度的增强以及成核机制的转化,它会逐渐增加。从研究中得出结论,聚乙烯(PE)-G纳米复合材料的非等温结晶行为在很大程度上取决于石墨烯的含量和冷却速率。Cabello等人在他们的工作中探索了MGCL 2作为电解质的用法,以增加Li 4 Ti 5 O 12(LTO)电化学性能,作为下一代MG电池中新型阴极[8]。
摘要:随着分子检测从诊断实验室转移到现场检测变得越来越普遍,对基于核酸的诊断工具的需求突然增加,这些工具具有选择性、灵敏度、对地形变化的灵活性,并且具有成本效益,可以协助即时诊断系统进行大规模筛查,并在疫情爆发和大流行时在偏远地区使用。基于 CRISPR 的生物传感器是一种很有前途的核酸检测新方法,该方法使用 Cas 效应蛋白(Cas9、Cas12 和 Cas13)作为极其专业的识别组件,可与各种读出方法(如荧光、比色法、电位法、横向流动测定等)结合使用,进行现场分析。在本综述中,我们介绍了将 CRISPR Cas 系统与传统生物传感读出方法和扩增技术(如聚合酶链式反应 (PCR)、环介导等温扩增 (LAMP) 和重组酶聚合酶扩增 (RPA))相结合的一些技术方面,并继续阐述所开发的生物传感器在检测一些主要病毒和细菌疾病方面的前景。在本文的范围内,我们还讨论了最近的 COVID 大流行以及自其问世以来经过开发的众多 CRISPR 生物传感器。最后,我们讨论了 CRISPR Cas 系统在即时检测中的一些挑战和未来前景。
摘要:电池设计工作通常优先考虑提高活性材料的能量密度及其利用率。然而,优化电池单元和电池组级别的热管理系统也是实现与任务相关的电池设计的关键。电池热管理系统负责管理电池单元的热分布,对于平衡电池性能和寿命至关重要。设计这样的系统需要考虑电池单元和电池组内的众多热源。本文总结了使用等温电池量热法在几种商用锂离子电池单元中观察到的发热特性。主要重点是评估温度、C 速率和形成周期的影响。此外,模块级特性显示了模块互连产生的大量额外热量。在每个级别表征热特征有助于在设计、生产和特性阶段为制造提供信息,否则在整个电池组级别可能无法考虑到这些信息。对 5 kWh 电池组的进一步测试表明,由于冷却布置效率低下,可能会出现相当大的温度不均匀性。为了缓解这种挑战,提出了一种结合热特性和多领域建模的方法,提供了一种无需构建昂贵的模块原型的解决方案。
传热设备,例如热管,蒸气室,热通道,微通道散热器和毛孔冷却板,依靠二维稳定的稳定热传导来热管理电信,航空航天,航空航天和微电极的热传播组件。传导形状因子可以评估这些设备的二维稳定热传导。设备的nulus的几何形状及其在热生成组件上的机械附件可能会有所不同。鉴于单面加热和冷却的突出性,二维热传导通常是通过纳鲁斯扇形进行的。第一次开发了一个分析模型来预测环形扇区的传导形状因子。本模型是先前开发的等效圆形环模的扩展,并应用了等效的同心圆形环扇门。该模型的定量是参数边界几何的有限元元素建模的结果,在相对差异10%的相对差异之内捕获了大多数数据。目前的模型为同心形状的等温边界之间形成的环形扇形的形状因子提供了模拟,封闭形式的分析解决方案。更重要的是,它为设计和优化新型传热设备提供了一个统一的平台。
通常,优化资产效率会对可靠性产生不利影响,反之亦然。客观确定最佳权衡的唯一方法是通过数据辨别。工厂经理经常提出的一些代表性问题,以及理想情况下数据驱动的决策应该回答的问题包括:• 我是否应该在更高的温度下运行这个固定床反应器以实现更高的转化率?如果是这样,这将如何影响我的催化剂活性以及反应器的整体机械完整性?• 考虑到维护成本和压缩机可能降低的等温效率之间的权衡,我应该何时维修我的多级压缩机的中间冷却器?• 我是否可以在不增加计划外维护成本的情况下延长工厂停机间隔时间?这样的例子不胜枚举。整个行业对“大数据”的兴趣高涨表明,这些运营问题的客观、敏捷和有见地的答案现在可能触手可及。当然,通过工业物联网 (IIoT) 的进步而实现的数字控制系统、数据历史记录和额外的传感器监控点为制造公司提供了前所未有的数据量。然而,这些高维数据集通常具有具有挑战性的信噪比和高度的相关性/冗余性,同时本质上是非因果性的(即,单个传感器读数的变化并不总是能够绘制
轻质非水相液体 (LNAPL) 的天然源区枯竭 (NSZD) 可能是受石油影响场地的有效长期管理选择。但是,需要确定其未来的长期可靠性。NSZD 包括 LNAPL 组分的分配、生物和非生物降解以及地下的多相流体动力学。随着时间的推移,LNAPL 组分会耗尽,分配到各个相的组分会发生变化,可供生物降解的组分也会发生变化。为了适应这些过程并预测几十年到几个世纪的趋势和 NSZD,我们首次采用了多相多组分多微生物非等温方法来代表性地模拟现场规模的 NSZD。为了验证该方法,我们成功模拟了贝米吉现场 LNAPL 泄漏的数据。我们模拟了泄漏后 27 年测量中饱和区和非饱和区的整个深度。该研究推进了创建 NSZD 过程和未来趋势的通用数字孪生的想法。结果表明,这种详细的计算方法对于改善场地管理和恢复策略的决策是可行的,也是可负担的。该研究为复杂地下系统的计算数字孪生提供了基础。
成簇的规律间隔的短回文序列重复-Cas (CRISPR-Cas) 系统已成为下一代病原体诊断、基因编辑、药物发现和治疗的有前途的工具。它构成了许多古细菌和细菌物种的天然适应性免疫反应的一部分,通过切割核酸来抵抗外来噬菌体和质粒感染 (Brouns 等人 2008 年;Horvath 等人 2010 年;Garneau 等人 2010 年;Barrangou 等人 2007 年)。目前,研究重点是优化 Crispr-Cas 系统以用于人类 (Cebrian-Serrano 等人 2017 年;Hendel 等人 2015 年;Kumar 等人 2019 年;Moorthy 等人 2020 年;Naeem 等人 2020 年)。快速检测致病病原体可以实现准确、快速的治疗,并有助于防止疾病的传播。而传统的诊断方法,如限制性酶、重组酶、核酸酶、基于测序的方法、基于 PCR/qPCR 的方法和基于等温扩增的技术(Yang 和 Rothman 2004 ;Zhao 等人 2015 ;Scheler 等人 2014 )耗时长、特异性和灵敏度低、价格昂贵、需要技术专长和复杂的
摘要:植物中的病毒感染威胁粮食安全。因此,需要简单有效的病毒检测方法,以采用可以防止病毒扩散的早期措施。然而,基于聚合酶链反应(PCR)扩增病毒基因组的当前方法需要实验室条件。在这里,我们利用了CRISPR-CAS12A和CRISPR-CAS13A/D系统来检测三种RNA病毒,即烟草的烟叶病毒,烟草蚀刻病毒和马铃薯病毒X,在Nicotiana Benthamiana植物中。我们应用了CRISPR-CAS12A系统来检测由PCR或等温扩增产生的病毒DNA扩增子,并且在混合感染的植物中也进行了多重检测。此外,我们调整了检测系统以绕过昂贵的RNA纯化步骤,并获得带有横向流条的可见读数。最后,我们应用了CRISPR-CAS13A/D系统直接检测病毒RNA,从而避免了进行前置步骤的必要性,并获得了随病毒载荷缩放的读数。这些方法允许在收获叶片后半小时内进行病毒诊断的性能,因此可能与可灭绝的应用有关。关键词:核酸检测,CRISPR诊断,多重诊断,植物病毒■简介
光聚合物衍生的碳的越来越流行,但可用特征尺寸的范围有限。这里的重点是扩展轨道到低表面与体积比(SVR)结构。描述了具有FTIR和DSC的高温丙烯酸光聚合前体的前体,并开发了用于在MM量表中以1.38×10 - 3μm-1的SVR生产构建的碳的热惰性总和处理。基于热重分析和质谱法,两种激活能量为≈79和169 kJ mol -1的热度制度被撤消,这在聚合物的形态转换过程中的机制是理论的,在300°和500°C之间的形态转换过程中。元素组成(440–600°C,O/C 0.25–0.087%)。洞察力导致对初始坡道(2°C min -1至350°C),等温固定(14 h),后保持坡道(0.5°C min -1-1至440°C)和最终坡道(10°C min -1至1至1000°C)进行优化的热处理。所得的碳结构在尺寸上是稳定的,无孔在μm的比例下,并包含特征大小的前所未有的变化(从mm到μm,比例)。发现应将构造碳推向工业相关的量表。