美国能源部的普林斯顿等离子体物理实验室 (PPPL) 是一个等离子体和聚变科学合作国家中心。其主要任务是发展科学理解和关键创新,从而开发出有吸引力的聚变能源。相关任务包括在等离子体科学和技术的广阔前沿开展世界一流的研究,并提供最高质量的科学教育。
在等离子体处理中,功率输送与非线性负载的匹配是一项持续的挑战。微电子制造中使用的等离子体反应器越来越多地采用多频率和/或脉冲方式,从而产生非线性且在许多情况下非稳态的电气终端,这可能会使功率与等离子体的有效耦合变得复杂。对于脉冲电感耦合等离子体尤其如此,其中等离子体的阻抗在启动瞬态期间可能会发生显著变化,并经历 E – H(电容到电感)转换。在本文中,我们讨论了使用固定组件阻抗匹配网络对脉冲电感耦合等离子体(Ar/Cl 2 混合物,压力为数十毫托)进行功率匹配的动态计算研究的结果及其对等离子体特性的影响。在本次研究中,我们使用了设定点匹配,其中匹配网络的组件在脉冲周期的选定时间提供最佳阻抗匹配(相对于电源的特性阻抗)。在脉冲早期匹配阻抗使功率能够为 E 模式供电,从而强调电容耦合和等离子体电位的大偏移。这种早期功率耦合使等离子体密度能够更快地上升,而在脉冲后期的 H 模式中不匹配。早期匹配还会产生更多能量离子轰击表面。在脉冲后期匹配会降低 E 模式中耗散的功率,但代价是降低等离子体密度的增加速度。
冷大气压等离子体 (CAPP) 已成为一种多功能工具,应用范围从材料加工到等离子体医学 [1]。近年来,针对大气压冷等离子体装置的研究出现了显著增长 [2, 3]。这些装置的优点是无需使用昂贵且笨重的真空设备 [4]。此外,由于其气体温度低且产生的活性物质,这种类型的等离子体源具有从工业到生物学等各种应用 [5,6]。大气压冷等离子体蚀刻已在各个行业中得到广泛应用。在微电子领域,它用于半导体材料的精确和高分辨率蚀刻,从而能够生产更小、更高效的电子设备。在汽车工业中,它在改善粘合剂粘合和表面处理、提高部件的耐用性和性能方面发挥着作用 [7,8]。医疗领域受益于其对医疗器械进行消毒的能力,确保了患者的安全 [9]。在包装领域,它有助于表面活化,从而提高油墨和涂层的附着力。此外,它的环保特性符合可持续发展目标,使得大气压冷等离子蚀刻成为现代工业过程中越来越有价值的工具。
引入生物材料的表面特性非常重要,因为它们可以控制生物相容性和功能性能。[1]目前正在为生物医学应用探索不同的高级再生工程策略,例如微流体操纵设备和生物活性微/纳米型。[2 - 5]需要仔细调整这些晚期生物材料设备的表面特性,以增强有利的适当或生物反应。3D打印的聚合物支架是另一类重要的生物材料,广泛用于组织工程应用,例如骨组织工程。[6]然而,疏水性和低细胞附着使量身定制3D打印的SCAF-FOLD的表面特性很重要。低温血浆处理(LTPT)被认为是修改生物材料表面特性的绿色方法。[7] LTPT可以用反应性涂层和纳米颗粒修改/沉积生物材料的表面。[8 - 10]这些修饰可以显着影响生物材料的生物相容性和功能性能。最近,已经探索了LTPT来修改3D打印脚手架的表面以赋予多种特性,包括但不限于改善水平和抗菌功能。[10]这使得3D打印生物材料的LTPT在医学上很重要。
协议名称:Mag-Net,使用Magresyn®Sax通过LC-MSMS协议ID:MAG-NET EV富集进行分析的膜结合囊泡的富集:麦克海net EV富集上次修改:2023年12月8日,2023年12月8日引入了华盛顿大学基因组科学的研究人员,与Resyn Biosciences合作,并具有启发性,并具有Simply nequal nod nodect and Inlicen,并具有启发性,并充满了Indexs,并具有Intext and not not not not not not not not not not not not not not not not not not not not not not。同时耗尽丰富的血浆蛋白的同时,血浆中的EV颗粒。eV捕获基于MagResyn®SAX微粒之间的静电相互作用,而带负电荷的磷脂脂质(例如磷脂酰螺丝氨酸)位于EV膜表面上。此外,EV捕获被认为可以通过超孔MagResyn®主链的独特尺寸排除特性增强。端到端,血浆到LCM,工作流无缝结合所有步骤,包括EV捕获,丰富的血浆蛋白质耗竭,EV裂解,还原,烷基化,烷基化以及基于PAC的EV蛋白上的EV蛋白在珠子上聚集,洗涤和消化,从等离子体过渡,从等离子体过渡到质量图表,以分析准备分析效果。最终MAG-NET提供了血浆蛋白质组的高通量和具有成本效益的深度暗示。请联系info@resynbio.com,如果您对此协议有任何疑问,并且可以在翠鸟™磁性处理站上获得半自动化样品处理的方法。要求该协议不是,也不应将其解释为对任何产品的认可,而是由相关出版物的作者提供的,以帮助研究人员实现LAB Inter-LAB可重复性的方法。
锂离子电池中内部短路(ISC)的抽象可靠且及时检测对于确保安全有效的操作很重要。本文通过考虑细胞不均匀性和传感器限制(即没有平行字符串中单个单元的独立电流传感器)来研究平行连接电池的ISC检测。要在电池字符串响应中表征与ISC相关的签名,首先确定了平行连接的电池电池的电热模型,该模型是明确捕获ISC的。通过分析从电热模型产生的数据,在传感器限制的约束下,将电池字符串中各个单元之间的表面温度分布确定为ISC检测的指标。然后,设计了卷积神经网络(CNN),以使用细胞表面温度和琴弦作为输入的总容量来估计ISC电阻。基于CNN的估计ISC电阻,将字符串归类为有故障或无故障,以指导电池的检查或更换。算法在信号噪声的存在下以准确性,错误警报率和丢失的检测率进行评估,从而验证了所提出方法的有效性和鲁棒性。
粗糙的金属表面会导致表面等离子体极化子 (SPP) 严重散射,从而限制 SPP 的传输效率。在此,我们提出了一种设计超紧凑等离子体路由器的通用方案,该路由器可以在任意形状的粗糙表面上限制和引导 SPP。我们的策略利用了最近提出的变换不变超材料。为了说明这种方法的优势,我们进行了有限元模拟,结果表明所设计的表面波路由器的性能不受厚度变化的影响。因此,1/6 厚度的变换不变超材料层可以显著抑制任意形状的金属凸起或缝隙的散射。我们还给出了基于周期性金属/ε 近零 (ENZ) 材料堆叠实现这种超紧凑表面波路由器的蓝图。
在这一活动框架内,在 DLR L2K 等离子风洞设施中测试了复杂的设备。这些测试对于了解该设备的解体现象、改进风险评估和实施有效的 D4D 措施至关重要。测试结果分析为得出针对报废设计的建议提供了更好的理解。需要进一步调查,同时还要考虑改进实验设置。因此,测试后数据分析将更好地了解所选硬件的破坏过程,以利于预测模型和针对报废设计的建议。结果将有助于更深入地了解 D4D,从而有利于航天工业的早期太空任务研究。
我们在此报告了脉冲磁流体等离子枪的初步研究,该枪可根据需要在预填充或气体喷射模式下运行。这些模式通过可调节的推力和比冲实现灵活和响应迅速的性能。使用分子氮推进剂的运行表明,磁流体推进器是极低地球轨道空气收集和阻力补偿的候选技术。通过利用推进剂气体动力学改变推进器内的填充率和流动碰撞性,实现双模式运行。这会导致形成不同的模式,这些模式分别以它们允许的电流驱动的磁流体波为特征,即磁爆燃和磁爆轰。这些模式构成了使用气体动力学实现响应迅速的推进器性能的基础。使用飞行时间发射诊断来表征近场流速,我们发现当气体在推进器中膨胀时,模式之间会发生相对剧烈的转变,在爆燃和爆震状态下排气速度分别在 10 到 55 公里/秒之间。处理后的质量位模拟首次让我们看到了推进器的性能以及比冲和推力之间的权衡。预计脉冲位可调性为 ≏ 22%,在突发模式下运行时推进剂填充分数不同。
Pamela C. L Ferraira 1,Joseph Therriault ,Wagner S. Brum 4.5,6,Firoza Z笨拙1,奥斯卡5,13,15,15,16,Blennow Blennow 5,6,Serge Gauthier2实验室神经影像学翻译,仅是ouest的通用情报与社会服务(CIUSSS)加拿大QC蒙特利尔神经病学系。4生物科学的物质计划。5 5 5 5 5 5瑞典瑞典神经化学系。6临床神经化学实验室。7门诊计划与开发计划计划医院,全球港口,RS,巴西。14英国UCL英国痴呆症研究所,英国伦敦。14英国UCL英国痴呆症研究所,英国伦敦。8联邦大学药理学系Rio Grande Do Sul,巴西RS Porto Alegre。 9生物科学研究生课程:药理学和治疗性,联邦大学里奥·格兰德·杜尔(Rio Grande Do) 10瑞典哥德堡Sahlgrenska大学医院的临床神经化学实验室。 11 Wallenberg分子与转化医学中心,瑞典哥德堡大学,哥德堡大学。 12年老年精神病学系,心理学与神经科学研究所,英国伦敦伦敦国王学院。 13英国伦敦UCL女王神经病学研究所神经退行性疾病系。 15香港神经退行性疾病中心,中国香港。 16威斯康星州阿尔茨海默氏病研究中心,威斯康星大学医学与公共卫生学院,威斯康星大学麦迪逊分校,美国威斯康星州麦迪逊大学,美国威斯康星州麦迪逊市17,美国匹兹堡大学医学院,美国宾夕法尼亚州匹兹堡大学医学院。8联邦大学药理学系Rio Grande Do Sul,巴西RS Porto Alegre。9生物科学研究生课程:药理学和治疗性,联邦大学里奥·格兰德·杜尔(Rio Grande Do)10瑞典哥德堡Sahlgrenska大学医院的临床神经化学实验室。11 Wallenberg分子与转化医学中心,瑞典哥德堡大学,哥德堡大学。12年老年精神病学系,心理学与神经科学研究所,英国伦敦伦敦国王学院。 13英国伦敦UCL女王神经病学研究所神经退行性疾病系。 15香港神经退行性疾病中心,中国香港。 16威斯康星州阿尔茨海默氏病研究中心,威斯康星大学医学与公共卫生学院,威斯康星大学麦迪逊分校,美国威斯康星州麦迪逊大学,美国威斯康星州麦迪逊市17,美国匹兹堡大学医学院,美国宾夕法尼亚州匹兹堡大学医学院。12年老年精神病学系,心理学与神经科学研究所,英国伦敦伦敦国王学院。13英国伦敦UCL女王神经病学研究所神经退行性疾病系。 15香港神经退行性疾病中心,中国香港。 16威斯康星州阿尔茨海默氏病研究中心,威斯康星大学医学与公共卫生学院,威斯康星大学麦迪逊分校,美国威斯康星州麦迪逊大学,美国威斯康星州麦迪逊市17,美国匹兹堡大学医学院,美国宾夕法尼亚州匹兹堡大学医学院。13英国伦敦UCL女王神经病学研究所神经退行性疾病系。15香港神经退行性疾病中心,中国香港。16威斯康星州阿尔茨海默氏病研究中心,威斯康星大学医学与公共卫生学院,威斯康星大学麦迪逊分校,美国威斯康星州麦迪逊大学,美国威斯康星州麦迪逊市17,美国匹兹堡大学医学院,美国宾夕法尼亚州匹兹堡大学医学院。
