最近,引入了一种新颖的实空间重正化群 (RG) 算法。通过最大化信息论量,即实空间互信息,该算法可确定相关的低能自由度。受此启发,我们研究了平移不变系统和无序系统的粗粒化程序的信息论性质。我们证明,完美的实空间互信息粗粒化不会增加重正化汉密尔顿量中的相互作用范围,并且对于无序系统,它会抑制重正化无序分布中相关性的产生,从这个意义上讲是最优的。我们通过对干净随机的伊辛链进行任意粗粒化,通过经验验证了这些复杂性度量作为 RG 保留信息的函数的衰减。结果建立了 RG 作为压缩方案的性质与物理对象(即汉密尔顿量和无序分布)性质之间的直接且可量化的联系。我们还研究了约束对通用 RG 程序中粗粒度自由度的数量和类型的影响。
摘要使用琼脂二聚体扩散方法研究了香料果皮与壳聚糖混合在抑制四种微生物的生长中,抑制四种微生物的生长,抑制四种微生物的生长。发现与壳聚糖混合的石榴果皮的粗提取物有效地抑制了所有测试过的微生物的生长。在另一项研究中,将黄瓜水果(SpeedMax品种)涂有1)壳聚糖,2)与壳聚糖混合的石榴果皮中的粗提取物,并与对照组(浸入水中)进行比较。黄瓜在7°C下储存,并每7天记录每7天的黄瓜的质量归因。通过测量黄瓜水果的体重减轻,成熟和变质来记录实验结果。发现与壳聚糖混合(CHI + PPE,2.59±0.01)混合的粗化石榴果皮提取物涂料对体重损失百分比没有显着影响,与壳聚糖(CHI,2.58±0.01)相比,但与对照组的涂层有显着差异(2.93±0.001)。然而,用粗化石榴果皮提取物与壳聚糖(CHI + PPE)混合的涂料黄瓜倾向于增加成熟的量比壳聚糖和对照组涂层的成熟量更大(p <0.05)。与对照组相比,仅壳壳涂层就无法延迟黄瓜水果的变质。然而,发现涂有粗化石榴果皮提取物与壳聚糖混合的黄瓜水果比用壳聚糖和对照涂层的壳聚糖更宠坏(p <0.05)。关键字:黄瓜,石榴果皮,壳聚糖,涂料
Martini 粗粒度力场 Martini 3 的最新重新参数化提高了该模型在预测分子动力学模拟中的分子堆积和相互作用方面的准确性。在这里,我们描述了如何在 Martini 3 框架内精确参数化小分子,并提供了一个经过验证的小分子模型数据库。我们特别关注脂肪族和芳香族环状结构的描述,这些结构在溶剂和药物等小分子或蛋白质和合成聚合物等大分子的构成块中普遍存在。在 Martini 3 中,环状结构由使用更高分辨率粗粒度颗粒(小颗粒和微小颗粒)的模型描述。因此,本数据库构成了校准新 Martini 3 小颗粒和微小颗粒尺寸的基石之一。这些模型表现出出色的分配行为和溶剂性能。还捕获了不同本体相之间的可混溶性趋势,从而完成了参数化过程中考虑的一组热力学性质。我们还展示了新的珠子尺寸如何能够很好地表示分子体积,从而转化为更好的结构特性,例如堆叠距离。我们进一步介绍了设计策略,以构建复杂度更高的小分子的 Martini 3 模型。
摘要:由于表示所有原子的计算复杂性,经典分子动力学 (MD) 模拟在原子分辨率(细粒度级别,FG)下对大多数生物分子过程的应用仍然有限。这个问题在具有非常大构象空间的基于蛋白质的生物分子系统存在的情况下被放大,并且具有细粒度分辨率的 MD 模拟具有探索该空间的缓慢动态。文献中当前的可转移粗粒度 (CG) 力场要么仅限于以隐式形式编码环境的肽,要么无法捕获从氨基酸一级序列到二级/三级肽结构的转变。在这项工作中,我们提出了一种可转移的 CG 力场,它明确表示环境,以便对蛋白质进行精确模拟。力场由一组代表不同化学基团的伪原子组成,这些化学基团可以连接/关联在一起以创建不同的生物分子系统。这保留了力场在多种环境和模拟条件中的可转移性。我们添加了可以响应环境异质性/波动的电子极化,并将其与蛋白质的结构转变耦合。非键合相互作用通过基于物理的特征(例如通过热力学计算确定的溶剂化和分配自由能)进行参数化,并与实验和/或原子模拟相匹配。键合势是从非冗余蛋白质结构数据库中的相应分布推断出来的。我们通过模拟经过充分研究的水蛋白系统来验证 CG 模型,这些系统具有特定的蛋白质折叠类型 Trp-cage、Trpzip4、villin、WW-domain 和 β - α - β 。我们还探索了力场在研究 A β 16-22 肽的水聚集中的应用。■ 简介蛋白质分子的生理功能与其相关结构和动力学密切相关。1、2
由于古老的起源,在出土的甲骨文骨铭文(OBI)中有许多不可或缺的字符,这使伟大的challenges带来了认可和研究。近年来,图像介绍技术取得了显着的进步。但是,这些模型无法适应OBI的唯一字体形状和复杂的文本背景。为了应对这些上述挑战,我们提出了一种使用生成的对抗网络(GAN)恢复受损的OBI的两阶段方法,该方法结合了双重歧视者结构,以捕获全球和局部图像。为了准确恢复图像结构和细节,提出了空间注意机制和新型损失函数。通过将现有OBI和各种蒙版的清晰副本喂入网络中,它可以学会为缺失区域生成内容。实验结果揭示了我们提出的方法完成OBI的有效性。
应变,按下尽可能多的液体。您应该有大约1汤匙液体。使用前冷却5分钟。为贝尔纳斯酱,将黄油轻轻融化在锅中。站立30秒钟,直到乳白色固体定居在底部。倒出175克澄清的黄油,丢弃剩下的乳白色。热时在此食谱中使用。将蛋黄,注入醋和盐放入一个高大的狭窄容器中,搅拌器棒一直适合底部。短暂闪电战。将棒搅拌器高高地慢慢淋上澄清的黄油,大约一分钟。添加了所有黄油后,闪电队再闪电10秒钟,上下移动棍子。调整一致性,加入1汤匙水,然后闪电以掺入。根据需要添加更多的水,一次每次1茶匙,直到贝尔纳斯酱是浓而柔软的酱汁,而不是流鼻涕。搅拌龙龙和cher。立即使用或在温暖的地方保持温暖,直到需要。
摘要。可变形图像配准是医学图像分析中的关键步骤,用于找到一对固定图像和运动图像之间的非线性空间变换。基于卷积神经网络 (CNN) 的深度配准方法已被广泛使用,因为它们可以快速、端到端地执行图像配准。然而,这些方法通常对具有较大变形的图像对性能有限。最近,迭代深度配准方法已被用来缓解这一限制,其中变换以由粗到细的方式迭代学习。然而,迭代方法不可避免地延长了配准运行时间,并且倾向于在每次迭代中学习单独的图像特征,这阻碍了利用这些特征来促进以后的迭代配准。在本研究中,我们提出了一种用于可变形图像配准的非迭代由粗到细配准网络 (NICE-Net)。在 NICE-Net 中,我们提出了:(i) 单次深度累积学习 (SDCL) 解码器,可以在网络的单次(迭代)中累积学习从粗到细的转换;(ii) 选择性传播特征学习 (SFL) 编码器,可以学习整个从粗到细配准过程的常见图像特征并根据需要选择性传播这些特征。在 3D 脑磁共振成像 (MRI) 的六个公共数据集上进行的大量实验表明,我们提出的 NICE-Net 可以胜过最先进的迭代深度配准方法,而只需要与非迭代方法类似的运行时间。
2019年,https://brokingdefense.com/2019/10/ethical-ai-for-war-defense-innovation-board-says-it-can-be-done/,
摘要:电子封装产品在使用过程中,焊点在温度循环作用下发生热疲劳,对电子产品的性能和焊点的可靠性有显著的影响。本文对微电子封装焊点热疲劳失效机理、热疲劳过程的组织变化、对焊点疲劳寿命的影响因素以及热疲劳寿命的仿真分析与预测进行了综述。研究表明,在交变温度循环的高温阶段,焊点发生不均匀粗化,导致疲劳裂纹的产生。但焊料厚度和高温阶段的保持时间对热疲劳影响不显著。随着循环次数的增加,粗化区和IMC层不断增厚,裂纹沿金属间化合物(IMC)层与粗化区界面萌生并扩展,最终导致焊点失效。对于含铅和无铅焊料,含铅焊料表现出更快的疲劳裂纹扩展速率,并以穿晶方式扩展。温度和频率对焊点热疲劳寿命的影响程度不同,焊点的疲劳寿命可以通过多种方法和模拟裂纹轨迹进行预测,也可以通过使用统一的本构模型和有限元分析进行预测。