粗粒(CG)力场参数是使用真空中纤维素Iβ的原子分子动力学模拟得出的(0%的水分含量),并使用Gromacs软件[5]和CHARMM力场进行的水(95%水分含量)溶剂(95%的水分含量)[6]。72使用自下而上的粗粒方法将葡萄糖残基映射到一个CG位置:在存在水存在下,使用雨伞采样确定了100个纤维素表面之间的非键相互作用,以计算平均力的潜力(PMF)。势能被视为真空模拟中PMF的近似值,因为缺乏水减少了对自由能的熵贡献。使用Boltzmann倒置参数化键合的相互作用,以从与CG位点相对应的原子组之间的键长和角度的概率分布来计算PMF。使用LAMMPS软件进行了粗粒纳米纤维素组件的MD模拟[7]。进行了机械应力MD模拟,以确定具有强力场参数的CG纳米纤维素组件的拉伸模量,其水分含量为0%和95%。
抽象背景:败血症相关的脑病(SAE)是与败血症相关的器官功能障碍的一种普遍形式。没有伴随的明显的中枢神经系统(CNS)感染,但它具有死亡率的重大风险,可能导致持久的神经系统并发症。Angong niuhuang药丸(AGNH)在诸如脑缺血,脑部创伤和败血症等疾病中的功效已经建立了良好。尽管如此,AGNH在SAE进展中的特定调节作用和基本机制仍未探索。方法:脂多糖(LPS)处理用于构建SAE大鼠模型。Berderson的神经检查评分系统用于评分。通过酶联免疫吸附测定(ELISA)或相应的商业试剂盒检查基因和铁含量的水平。通过自动凝血分析仪确认了凝血酶原时间(PT),激活的部分血栓质蛋白时间(APTT),凝血酶时间(TT)和纤维蛋白原(FIB)水平。通过苏木精(HE)染色评估了神经元的数量和形态。蛋白质表达是通过蛋白质印迹确定的。结果:在AGNH或Deatecamine(DFO,铁毒性抑制剂)治疗后,LPS治疗介导的伯德森从未通过LPS治疗介导的功能评分增加,这表明AGNH改善了少年SAE小鼠的神经行为功能。此外,AGNH改善了年轻SAE小鼠的炎症和凝结参数。AGNH促进了少年SAE小鼠的神经元生长和减轻神经元损伤。此外,AGNH抑制了年轻SAE小鼠的氧化应激。最后,证明AGNH促进了与核因子2相关因子2(NRF2)/谷胱甘肽过氧化物酶4(GPX4)信号传导途径,通过上调NRF2和GPX4蛋白表达式。结论:这项研究表明,通过调节NRF2/GPX4信号通路,AGNH具有抑制GPX4诱导的少年SAE小鼠纤维毒性的能力。这一突破意味着AGNH作为SAE的治疗剂有前途的前景。
• 感光度响应 (ADU/R) • 温度稳定性 (暗帧) • 满阱与抗晕 • 空间分辨率 (MTF-CTF) • 空间线性 • 信噪比转换 (DQE) • 动态范围 • 图像保留 (CsI 函数)
• 感光度响应 (ADU/R) • 温度稳定性 (暗帧) • 满阱与抗晕 • 空间分辨率 (MTF-CTF) • 空间线性 • 信噪比转换 (DQE) • 动态范围 • 图像保留 (CsI 函数)
