蛋白XPA在核苷酸切除修复途径中起关键作用。最近的实验工作表明,XPA的功能动力学涉及沿DNA的一维扩散以搜索损伤位点。在这里,我们使用各种盐浓度的广泛的粗粒分子模拟来研究所涉及的动力学过程。结果表明扩散机制的盐浓度依赖性很强。在低盐浓度下,与旋转耦合的一维扩散是主要机制。在高盐浓度下,三维机制的扩散变得更有可能。在较广泛的盐浓度下,涉及DNA结合的残基是相似的,并且沿DNA显示的XPA的一维扩散是降低功能。此亚延伸功能暂定归因于XPA – DNA相互作用的各种强度。另外,我们表明,与DNA的结合和盐浓度升高倾向于拉伸XPA的构象,从而增加了位点的暴露范围,以结合其他修复蛋白。
我们开发了一种基于耗散粒子动力学(DPD)的计算方法,该方法将溶剂的水动力相互作用引入了溶质的粗粒模型,例如离子,分子或聚合物。dpd-solvent(DPDS)是一种完全非驻留方法,可以直接通过任何基于粒子的溶质模型以所需的溶剂粘度,可压缩性和溶质扩散率直接掺入流体动力学。溶质仅通过DPD恒温器与溶剂相互作用,这确保了溶质系统的平衡性能不受引入DPD溶剂的影响,而恒温器耦合强度则设定了所需的溶质扩散率。因此,DPD可以用作替代传统分子动力学恒温器,例如Nosé -Hoover和Langevin。我们证明了在聚合物动力学和通过纳米孔电流流动的情况下,DPD的适用性。该方法应广泛用作将流体动力相互作用引入现有的粗粒溶质和软材料模型的一种手段。
在采矿项目的所有阶段,样本收集,制备和分析都是重要的活动。野外样品收集后,质量和片段大小的降低,以提供一个子样本进行测定。在贵金属环境中,此过程可能特别具有挑战性,并且可能需要特定设计的协议。最大的挑战之一是确保在整个钻机中控制所有采样和子抽样错误以测定途径。在大多数情况下,主要采样误差(钻机和/或核心棚的误差)可能会淹没整个过程。在所有抽样阶段中也存在挑战。尤其是纸浆可能包含一些解放的,互面粉的金颗粒,要求对纸浆进行总共进行测定,以避免在分裂和处理过程中避免不必要的其他错误。Photonassay™是一种非脱脂和快速的黄金测定技术,能够以每小时约70个样品的速度分析粗粉碎(<3 mm)350-500 g样品。它可以分配快速测定的周转时间,需要较低的staķng水平才能进行操作,并消除了对铅或氰化物等化学物质的需求。这些特征使其适用于黄金矿石,尤其是那些粗糙的黄金,因为只需要粉碎(最少的释放金),并且可以测定多个批次。但是,如果没有优化任何采样阶段,将重新设置此优势。采样协议的优化来自理解矿化和所需的程序输出。它不仅是数学或统计过程,而且是一个复杂的过程,利用矿体知识(包括黄金驱逐出境研究)和采样理论的应用。
This course aims at introducing the basic concepts and techniques in carrying out chemical analysis by using various modern spectroscopic and chromatographic instruments.Students will learn how to use modern instruments to determine the amounts of substances present in a mixture down to part per million levels (ppm), and identify the structure of a compound.Techniques such as UV-visible spectroscopy, infrared spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, gas chromatography and high performance liquid chromatography will be covered.This course will also discuss some common standard practices of collecting and preparing samples for laboratory testing, the accreditation system in testing laboratories.This course is conducted in the format of lecture.本课程旨在介绍化学分析中所用到的现代光谱和色谱仪器的基本概念和技术。学生将学习使用该 等仪器来分析浓度水平低至百万分之一的物质,并确定化合物的结构。课程内容包括紫外 − 可见光 谱法、红外线光谱法、质谱分析法、核磁共振、气相色谱法及高效能液相色谱法的操作技巧,以 及化验工作中的收集及制备样本的常用标准技巧和香港化验室所实行的认可系统。课程以讲课形 式进行。 Medium of Instruction:
总结系统生物学中的一个主要挑战是了解基因调节网络(GRN)中的各种基因如何共同执行其功能和控制网络动态。在具有数百个基因和边缘的大型网络的情况下,该任务变得极为难以解决,其中许多具有冗余的调节作用和功能。现有的模型减少方法通常需要对动态系统及其响应动力学参数的详细数学描述,而动力学系统通常不可用。在这里,我们提出了一种用于使用基于合奏的数学建模,降低维度降低和通过Markov Chain Monte Monte Carlo方法优化基因的数据驱动的大grn,名为Sacograci的粗粒度大GRN,称为Sacograci。sacograci需要网络拓扑作为唯一的输入,并且可以抵抗GRN中的错误。我们通过合成,基于文学和生物毒素的GRN进行基准并证明其用法。我们希望Sacograci能够增强我们建模复杂生物系统基因调节的能力。
抽象动机:由于DNA测序的进步,现在常规地进行了环境微生物群落的分类学分析。确定这些群落在全球生物地球化学周期中的作用需要鉴定其代谢功能,例如氢氧化,还原和碳固定。这些功能可以直接从宏基因组学数据中推断出来,但是在许多环境应用中,MetabarCoding仍然是选择的方法。从元法编码数据及其整合到地球化学循环的粗粒表示中,代谢功能的重建仍然是当今有效的生物信息学问题。结果:我们开发了一条称为Tabigecy的管道,该管道利用分类学官员来预测构成生物地球化学周期的代谢功能。在第一个步骤中,Tabigecy使用该工具Esmecata从输入液位中预测共识蛋白质组。为了优化此过程,我们生成了一个预先计算的数据库,其中包含来自Uniprot的2,404个分类单元的信息。使用BigeCyhmm搜索了共有的蛋白质组织,BigeCyhmm是一个新开发的Python软件包,依靠隐藏的Markov模型来识别参与生物地球化学周期代谢功能的关键酶。然后将代谢功能投射到周期的粗粒表示上。我们将塔博基(Tabigecy)应用于两个盐洞数据集,并通过对样品进行的微生物活性和水力化学测量结果验证了其预测。结果突出了研究微生物群落对地理化学过程的影响的方法。关键字:微生物群落,生物地球化学周期,代谢功能,分类学官员
最近,引入了一种新颖的实空间重正化群 (RG) 算法。通过最大化信息论量,即实空间互信息,该算法可确定相关的低能自由度。受此启发,我们研究了平移不变系统和无序系统的粗粒化程序的信息论性质。我们证明,完美的实空间互信息粗粒化不会增加重正化汉密尔顿量中的相互作用范围,并且对于无序系统,它会抑制重正化无序分布中相关性的产生,从这个意义上讲是最优的。我们通过对干净随机的伊辛链进行任意粗粒化,通过经验验证了这些复杂性度量作为 RG 保留信息的函数的衰减。结果建立了 RG 作为压缩方案的性质与物理对象(即汉密尔顿量和无序分布)性质之间的直接且可量化的联系。我们还研究了约束对通用 RG 程序中粗粒度自由度的数量和类型的影响。
1分子微生物学和结构生物化学(MMSB,UMR 5086),CNRS&Lyon大学,法国里昂,里昂; 2法国斯特拉斯堡·塞德克斯大学(UMR 7177 CNRS,umr 7177 CNRS) 3 Pharmcadd,商,商,韩国; 4计算生物医学,高级模拟研究所(IAS-5)和神经科学与医学研究所(INM-9),德国尤利希的ForschungszentrumJülichGmbh; 5德国亚兴的亚历大学数学,计算机科学与自然科学学院生物学系; 6 Zymvol Biomodeling,西班牙巴塞罗那; 7JülichSuperComputing Center(JSC),ForschungszentrumJülichGmbH,Jülich,德国; 8德国亚兴大学rWth亚兴大学医学院神经病学系和韩国灌木丛大学的Pukyong国立大学物理学系91分子微生物学和结构生物化学(MMSB,UMR 5086),CNRS&Lyon大学,法国里昂,里昂; 2法国斯特拉斯堡·塞德克斯大学(UMR 7177 CNRS,umr 7177 CNRS) 3 Pharmcadd,商,商,韩国; 4计算生物医学,高级模拟研究所(IAS-5)和神经科学与医学研究所(INM-9),德国尤利希的ForschungszentrumJülichGmbh; 5德国亚兴的亚历大学数学,计算机科学与自然科学学院生物学系; 6 Zymvol Biomodeling,西班牙巴塞罗那; 7JülichSuperComputing Center(JSC),ForschungszentrumJülichGmbH,Jülich,德国; 8德国亚兴大学rWth亚兴大学医学院神经病学系和韩国灌木丛大学的Pukyong国立大学物理学系9
可以将某些物理演化视为微观离散模型的突发有效结果。受经典粗粒化程序的启发,我们提供了一种遵循 Goldilocks 规则的粗粒化色盲量子细胞自动机的简单程序。该程序包括 (i) 将量子细胞自动机 (QCA) 在时空上分组为大小为 N 的细胞;(ii) 将细胞的状态投射到其边界上,并将其与精细动力学联系起来;(iii) 通过边界状态描述整体动力学,我们称之为信号;(iv) 为不同大小为 N 的细胞构建粗粒化动力学。这个简单的玩具模型的副产品是斯托克斯定律的一般离散模拟。此外,我们证明在时空极限中,自动机收敛到狄拉克自由哈密顿量。我们在这里介绍的 QCA 可以通过当今的量子平台实现,例如里德堡阵列、捕获离子和超导量子比特。我们希望我们的研究能够为更深入地理解这些分辨率有限的系统铺平道路。