NCI NPB Agreements for Pre-fractionated Samples • >680,000 fractions so far produced from NCI crude extracts • Pre-fractionated library of 500,000 natural product samples publicly released • >9,000,000 wells shipped to screening centers so far • Technology transfer of methods and automated systems to groups worldwide • >70 MTAs signed with industry, government, and academic screening centers
摘要 随着封装的微型化和异质集成化,人们一直致力于开发低温焊料。Sn-58Bi 共晶焊料的熔点为 138°C,是一种颇具吸引力的替代方案。由于 Sn-Bi 焊料的熔点较低,即使在室温下也可能发生 Bi 粗化。本文观察了室温储存过程中 Sn-58Bi 接头的微观结构演变。室温老化导致焊料基体中 Bi 相的溶解和粗化,尤其是在初生 Sn 相和 Sn-Bi 枝晶中。通过纳米压痕测量了单个富 Sn 相和富 Bi 相的力学性能。结果表明,由于溶液强化,老化焊点中富 Sn 相比富 Bi 相具有更高的杨氏模量和硬度。Bi 相比 Sn 更柔顺,硬度更低。
3 天前 — 来自大臣官房卫生监察长、防卫政策局局长、防卫采购局局长或陆上自卫队参谋长...... ・与规格相关的内容。 补给队米食课负责人:佐竹(内线 336)。 1. 第 3 页。 物品明细等......
建议从中子陷阱中超冷的中子的异常泄漏可能与其中的多核子形成有关。表明,即使在没有二氧化酮作为游离稳定颗粒的情况下,温度t小于10 -3 k的超低中子的气体也应形成培养基bose冷凝物。考虑了中子星中葡萄球子的稳定性的假设而产生的后果。讨论了在其中和沉重的核中形成bose冷凝物的条件。
微结构或纳米结构会引起衍射、干涉和散射。[3] 以这种方式产生的结构色通常与角度有关(彩虹色),与光吸收产生的颜色相比,结构色更鲜艳、可调且稳定。[4] 到目前为止,已有多种光子结构被用于产生结构色并取代传统的色素沉着。这些包括可调高折射率光子玻璃、微米级球形胶体组件和衍射光栅结构。[5,6] 虽然仿生光子结构已被用于创造高度饱和的结构色,但它们制造困难且成本高,不适合大规模生产。此外,整个可见光谱范围内对新的仿生结构色的需求尚未得到满足。因此,更好地理解结构着色的潜在机制无疑将改善颜色特性和寿命。虽然自然界中存在大量结构色的例子,但由于蝴蝶翅膀的光子纳米结构颜色鲜艳,因此人们对其的研究兴趣颇多。[7,8] 例如,Vigneron 等人发现,Pierella luna(月神蝴蝶)翅膀鳞片产生的彩虹色效应是由整个鳞片的宏观变形引起的,当翅膀被白光照射时,就像衍射光栅一样分解
摘要:结构颜色是一种引人入胜的光学现象,它是由复杂的光 - 物质相互作用引起的。来自天然聚合物的生物结构颜色在仿生设计和可持续结构中是无价的。在这里,我们报告了一种可再生,丰富且可生物降解的有机凝胶,该有机凝胶会产生具有生动结构颜色的稳定胆固醇液晶结构。我们使用68 wt%羟丙基纤维素(HPC)基质构建色凝胶,结合了不同的聚乙烯乙二醇(PEG)宾客分子。PEG包含具有定制极性的奇特端基团,可以通过PEG和HPC链之间的静电排斥在HPC螺旋主链上精确定位。这可以保留HPC的手性列相,而不会受到干扰。我们证明了钉子的极性会调谐HPC凝胶的反射色。此外,具有可变极性的凝胶对温度,压力和拉伸高度敏感,从而导致快速,连续和可逆的颜色变化。这些特殊的动态特征建立了手性列凝胶,作为跨显示,可穿戴设备,柔性电子,健康监测和多功能传感器的下一代应用的出色候选者。关键字:手性列结构,羟丙基纤维素,螺距,聚乙烯乙二醇,结构颜色
自我监督的单眼深度估计(DE)是一种学习深度的方法,没有昂贵的深度地面真理。但是,它经常在移动物体上挣扎,这些物体违反了训练期间的静态场景假设。为了结束这个问题,我们介绍了一个粗到最新的训练策略,该策略利用了地面与先验接触的地面,该期望是在户外场景中大多数移动物体在地面上造成的。在粗糙的训练阶段,我们将动态类中的对象排除在再投入损失计算中,以避免深度学习不准确。为了对物体的深度进行精确的监督,我们提出了一种新颖的接地式差异平滑度损失(GDS-loss),该损失(GDS-loss)鼓励DE网络将物体的深度与其接地接触点保持一致。随后,在精细的训练阶段,我们完善了DE网络,以了解重新投影损失中对象的详细深度,同时通过使用基于成本量的加权因素利用我们的正则化损失来确保对移动对象区域的准确DE。我们的整体粗表表训练策略可以轻松地与无需修改的方法集成,从而显着提高了挑战性的城市景观和KITTI数据集的DE性能,尤其是在移动对象区域中。
This course aims at introducing the basic concepts and techniques in carrying out chemical analysis by using various modern spectroscopic and chromatographic instruments.Students will learn how to use modern instruments to determine the amounts of substances present in a mixture down to part per million levels (ppm), and identify the structure of a compound.Techniques such as UV-visible spectroscopy, infrared spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, gas chromatography and high performance liquid chromatography will be covered.This course will also discuss some common standard practices of collecting and preparing samples for laboratory testing, the accreditation system in testing laboratories.This course is conducted in the format of lecture.本课程旨在介绍化学分析中所用到的现代光谱和色谱仪器的基本概念和技术。学生将学习使用该 等仪器来分析浓度水平低至百万分之一的物质,并确定化合物的结构。课程内容包括紫外 − 可见光 谱法、红外线光谱法、质谱分析法、核磁共振、气相色谱法及高效能液相色谱法的操作技巧,以 及化验工作中的收集及制备样本的常用标准技巧和香港化验室所实行的认可系统。课程以讲课形 式进行。 Medium of Instruction:
当具有整数自旋的粒子在低温和高密度下聚集时,它们会发生玻色-爱因斯坦凝聚 (BEC)。原子、磁振子、固态激子、表面等离子体极化子和与光耦合的激子表现出 BEC,由于大量占据相应系统的基态,因此产生高相干性。令人惊讶的是,最近发现光子在有机染料填充的光学微腔中表现出 BEC,由于光子质量低,这种情况发生在室温下。在这里,我们证明无机半导体微腔内的光子也会热化并经历 BEC。虽然人们认为半导体激光器是在热平衡之外运行的,但我们在系统中确定了一个热化良好的区域,我们可以清楚地区分激光作用和 BEC。半导体微腔是探索量子统计光子凝聚体的物理和应用的强大系统。实际上,光子 BEC 在比激光器更低的阈值下提供其临界行为。我们的研究还显示了另外两个优点:无机半导体中没有暗电子态,因此这些 BEC 可以持续存在;量子阱提供更强的光子-光子散射。我们测量了一个未优化的相互作用参数 (̃ g ≳ 10 –3),该参数足够大,可以了解 BEC 内相互作用的丰富物理特性,例如超流体光。
Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在材料的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您将需要直接从版权所有者获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。