蜂窝可以用许多不同的材料构成。最常见的制造方法是将平板材料与偏移的粘合剂粘合在一起,然后将其膨胀以打开单元。这种技术通常用于用纸或铝制品制造蜂窝。相反,蜂窝可以用热塑性材料构成,方法是将型材通过模具挤出,然后通过热熔将它们连接起来形成大块,从而无需使用粘合剂。无论使用哪种方法,都可以像泡沫或端粒轻木一样从大块蜂窝中切割出板材。但是,从挤压型材上切下的板材在芯的纵向和横向上具有与粘合和膨胀蜂窝不同的机械性能。挤压蜂窝,例如碳芯塑料蜂窝,在任一轴上具有相同的特性。
Master Bond UV15-7NV 是一种单组分紫外线固化聚合物系统,可用于高性能粘合、密封、涂层和封装。其最显著的特点包括卓越的物理强度、固化时低收缩率和良好的不黄变稳定性。该系统可与各种相似和不同的基材粘合良好,包括玻璃、金属和塑料,如聚碳酸酯、丙烯酸树脂和多种聚酯薄膜。它具有 100% 反应性,不含任何溶剂或稀释剂。UV15-7NV 对水、燃料和许多溶剂具有非常好的耐化学性。紫外线固化聚合物材料可在 -80°F 至 +300°F 的广泛使用温度范围内使用。UV15-7NV 具有出色的性能组合,包括出色的韧性、电绝缘性和耐受热循环性。
两类零件需要机械或真空夹紧,如图 6A 或 6B 所示。真空夹紧用于尽可能降低工具复杂性。但是,有些情况下需要机械夹紧来固定零件。在这两种情况下,都使用可拆卸手柄手动操作装满零件的托盘。手柄锁定到位并将操作员与热量隔离。每种托盘类型都有一个配套的加热底座,安装在粘合机加热器台上。从一种零件类型切换到另一种零件类型是通过更换底板并在粘合机上加载另一个程序来实现的。工具设计旨在确保无需调整 EFO 棒,从而最大限度地缩短转换时间。
16. 摘要 根据 VNTSC 和全美航空快运运营商 Henson Aviation, Inc. 之间的合作研究与开发协议,1991 年 8 月在北卡罗来纳州温斯顿塞勒姆的全美航空维修站对波音 737 飞机的机身进行了剪切散斑演示检查。检查比较了剪切散斑技术与目前强制方法在检测机身脱粘方面的有效性。现代飞机机身采用粘合剂粘合,通常与铆钉结合使用。随着飞机的老化,粘合失效可能成为一个主要问题,因为它可能导致疲劳开裂、湿气侵入和随后的腐蚀。任何这些事件都可能导致机舱压力损失,有时还会导致灾难性的机身故障。检测脱粘的剪切散斑方法取决于飞机蒙皮在不同压力下的变形。当被相干光照射时,从蒙皮的任意两点反射的光的相位关系和强度会因这种变形而发生变化。可以检测到最小到 0.00025 毫米的表面变化,并将其显示为视野的实时图像。随着压力的变化,对连续图像进行比较可以解释粘合情况。对于此演示,剪切干涉发现了 31 处脱粘;超声波确认了 25 处脱粘。
• 美国陆军,以数据科学为驱动的动态预期标准,以加速粘合装甲高负载率粘合剂的创新和转型,该团队致力于开发国防部第一个动态标准,采用嵌入式数据科学和可更新的军事技术驱动因素作为装甲粘合剂的资格指南。MIL-STD-3059 通过促进粘合装甲组件的复杂弹道响应与普遍可翻译和商业相关的准静态机械性能之间的数据驱动相关性,重新定义了传统观点。这种颠覆性方法将产品资格认证的时间和成本障碍减少了三分之二,并激励了高风险和高回报的创新。团队成员包括 Gerard T. Chaney、Daniel C. Deschepper、David P. Flanagan、Robert E. Jensen 和 Charles G. Pergantis。
抽象的传统制造行业目前沉浸在自动化过程中,集成了新技术和工具,这是由生产商要求改善制造过程以及员工工作条件的需求所驱动的。对于鞋类行业来说,粘合是在制造过程中的关键操作,在该过程中,外底被组装到持久的鞋子上。但是,在此操作中,工人通常会受到危险物质(即有机溶剂)的危害,并执行具有有限附加值的重复任务。在这种背景下,本文描述了一个研究项目的结果,其目的是从分析的不同技术中获得最大收益,例如协作机器人技术,人造视觉和多机器人控制,以操纵灵活/可变形物体。该项目的主要结果是在生产线中引入的鞋子粘合机机器人工作栏,以完全自动化操作。此工作电池集成了三个协作机器人,一个用于(热融化)粘合剂应用,另外两个则与两指电动握把,以同步进行粘合。也已嵌入了不同的视力系统以进行所涉及的各种过程。整个操作通过ROS(机器人操作系统)进行控制和协调。这项研究的主要发现展示了人类传统上进行的过程的自动化。在这种新颖的方法中,两个机器人合作操纵灵活的物体,使操作员免于重复,非价值补充的任务和处理危险物质的处理。
夹片键合 CCPAK-1212:设计下一代 GaN 产品 Serge Karboyan、Ding Yandoc、Barr Licup、Manikant、Sara Martin Horcajo、Stefano Dalcanale、John Denman、Zainul Fiteri、Hagop Tawidian、Manfred Rowe、Sven Zastrau、Adam Brown 和 Bas Verheijen Nexperia,Bramhall Moor Ln,斯托克波特,大曼彻斯特,英国 关键词:GaN、AlGaN、CCPAK1212、夹片键合、封装、产品可靠性。 引言 Nexperia 的商业化 GaN 基功率晶体管在功率器件市场表现出巨大优势,在 650 V 时提供低导通电阻。为了在不同应用(如车载充电器、DC-DC 转换器、牵引逆变器)[1、2] 中实现这种出色性能,Nexperia 推出了一种新型夹片键合封装 HEMT,在高工作电压下具有低关断态漏电。虽然这是 GaN 行业中第一个推出完全夹片键合解决方案而不需要任何引线键合连接的解决方案,但该解决方案的电感比引线封装低 5 倍(2.37 nH 对比近 14 nH),并且封装电阻超低,热阻小于 0.5 K/W [3]。要保持这种性能,需要高水平的器件工程设计,包括 HEMT 设计、MOSFET 设计以及紧凑型 CCPAK 中的共源共栅配置,从而形成具有行业领先性能的创新封装。夹片键合配置用于优化热性能和电气性能,简化的共源共栅可避免使用栅极驱动器。结果与讨论图 1 显示了共源共栅配置中的无引线键合 GaN HEMT 和 Si MOSFET。这些器件位于
• 混合粘合尺寸:~13 x 29 毫米(0.45x 掩模版) • 顶部的逻辑芯片可改善散热效果 • N5 XCD/CCD 堆叠在 N6 基片(IOD)上 • 垂直带宽高达 17TB/s