1.1.1。球键故障球键故障是微电子包装中最常见的故障模式[2]。通常是由于热老化引起的金属间生长。来自金属间层中的微裂纹并削弱了键[3]。球键合AU,Cu,Ag基线到Al金属化形成热老化的金属间化合物(铝制)。[4]在不同的金属超声波或热音线键中有限的界面IMC形成会增加键强度。但是,过度的IMC形成可能导致债券的性能下降。IMC的厚度增加会产生较高的电阻,从而导致流动流动时较高的热量产生。这会产生乘数效应,因为由于电阻率升高而引起的加热促进了粘合界面中其他IMC的形成[5]。imcs的形成以及界面处的相关空隙和裂纹决定键的强度和可靠性。IMC的形成对粘结强度有益,但是它们的过度生长可以增加键和接触电阻的脆性,从而导致键失败[6]。
手性是自然的重要方面,并且已经开发出许多宏观方法来了解和控制手性。对于手性高等胺,它们的柔性翻转过程使得在不形成粘结和破裂的情况下实现高性能可控性。在这里,我们提出了使用石墨烯 - 分子 - 透明烯单分子连接的第三级胺形成的一种稳定的手性单分子器件。这些单分子设备允许实时,原位,并长期测量具有高时间分辨率的个体手性氮中心的翻转过程。温度和偏置电压依赖性实验以及理论研究表明多种性手性中间体,表明通过能量相关因素对翻转动力学进行调节。角度依赖性测量进一步证明了使用与对称相关因子线性极化的光线有效地富集了手性态。这种方法提供了一种可靠的手段,可以理解手性的起源,阐明微观手性调节机制,并有助于有效药物的设计。
在三维纳米级范围内或基本结构成分,该物质属于该范围内。Micro-Nano 3D打印技术可以实现具有纳米精度的3D微纳米结构的处理,并且在许多领域都具有广泛的应用前景。金属和聚合物可以通过粘结反应轻松连接,以在3D打印中获得金属金属或共价键。这些有效的化学键使3D打印的结构稳定,而金属和塑料的3D印刷正在迅速发展。评论重点介绍了针对不同现场应用的独特复合纳米材料的最新发展,包括纳米材料和3D打印技术。概述了科学3D打印中使用的各种纳米材料的机制,功能特性,缺点和应用,包括金属基纳米材料,金属有机框架,上转换纳米颗粒和基于脂质的纳米颗粒。最后,这项研究介绍了概述,并突出了需要解决纳米材料需要解决的问题,以继续为3D打印的优势开发。
2。HOMO和异核分子中的结构和键合,包括分子的形状(VSEPR理论)。3。酸和碱的概念,硬柔软的酸碱概念,非水溶剂。4。主要组元素及其化合物:同种异体,合成,结构和粘结,化合物的工业重要性。5。过渡元素和协调化合物:结构,键合理论,光谱和磁性,反应机制。6。内部过渡元素:光谱和磁性特性,氧化还原化学,分析应用。7。有机金属化合物:合成,键合和结构以及反应性。均质催化中的有机金属。8。笼子和金属簇。9。分析化学分离,光谱,电和热器分析方法。10。生物素有机化学:照片系统,卟啉,胆汁酶,氧运输,电子转移反应;氮固定,医学中的金属络合物。11。通过IR,Raman,NMR,EPR,Mossbauer,UV-VIS,NQR,MS,电子光谱和微观技术来表征无机化合物。12。核化学:核反应,裂变和融合,放射分析技术和激活分析。
摘要:添加剂制造(AM),可持续性和创新的融合在行业4.0的框架内至关重要。本文研究了AM的环境友好和可持续的方面,通常称为3D打印,一种尖端的技术。它描述了AM的基本原理,除了其多种材料,过程和应用。本文展示了几种3D打印技术如何通过检查其环境影响来彻底改变可持续生产。可持续材料的特性,应用和挑战(例如可生物降解的聚合物和可回收塑料)得到了彻底检查。此外,该研究还探讨了3D打印在域中的含义,包括可再生能源成分制造,水和废水处理以及环境监测。此外,还检查了与可持续3D打印相关的潜在陷阱和挑战,强调了该领域持续研究和进步的关键。要有效地使可持续性目标与功能性能要求保持一致,必须解决融合沉积建模(FDM)印刷过程中的复杂性,包括次优粘结和纤维分布不均匀,这可能损害可生物降解材料的结构完整性和耐用性。正在进行的研究和创新对于克服这些挑战并增强可生物降解的FDM 3D打印材料的生存能力至关重要。
一种具有成本效益的方法,可以改善碳纤维增强聚合物(CFRP)预报复合材料的物理和机械性能,在该复合材料中,在传统的CFRP Prepreg复合材料的层次之间合成了电纺多多壁碳纳米管(MWCNT)/环氧纳米纤维。通过优化的静电纺丝过程成功产生了与MWCNT一致的环氧纳米纤维。纳米纤维直接沉积到预处理层上,以改善粘附和界面粘结,从而增加强度和其他机械性能的改善。因此,高压力性方案的层间剪切强度(ILSS)和疲劳性能分别增加了29%和27%。几乎看不见的撞击损伤(BVID)能量显着增加了45%。由于CFRP层之间高度导电MWCNT网络的存在,热电导率也得到了显着增强。所提出的方法能够在预处理的间层间界面上均匀地沉积MWCNT,以增强/增强CFRP性质,以前尚未证明,由于在环氧系统中由随机定向的MWCNT引起的高树脂粘度。
tadah!代码提供了一个多功能平台,用于开发和优化机器学习间的原子质潜力(MLIP)。通过集成综合描述符,它允许对系统交互的细微表示,并具有独特的截止函数和交互距离。tadah!支持贝叶斯线性回归(BLR)和内核脊回归(KRR),以增强模型的准确性和不确定性管理。关键特征是其超参数优化周期,迭代精炼模型体系结构以提高可传递性。这种方法结合了构图的限制,将预测与实验和理论数据保持一致。tadah!提供了一个用于LAMMP的接口,从而使MLIP在分子动力学模拟中的部署。它专为广泛的可及性而设计,支持桌面和HPC系统上的并行计算。tadah!利用模块化的C ++代码库,利用编译时间和运行时多态性来灵活性和效率。神经网络支持和预定义的粘结方案是潜在的未来发展,以及塔达!仍然对社区驱动的功能扩展开放。综合文档和命令行工具进一步简化了MLIP的开发和应用。
以下是一些游泳池的节水技巧:§使用游泳池盖 - 盖子可以帮助节省热量,最终导致泳池中一半以上的水在一年内蒸发近90%至95%。§检查是否泄漏 - 不时检查游泳池中是否可能泄漏,可以通过注意游泳池下游的潮湿点,在游泳池附近的水上饱和土壤来检测到这一点;泵或泳池泵设备,泄漏的管道,阀门或木木工,裂纹或粘结梁中的间隙。§降低水位 - 在游泳池中保持低水位有助于减少极端飞溅的水损失。§降低加热水池的温度 - 确保您在夏季降低游泳池加热器的温度,因此不会发生水蒸发。§反冲洗池过滤器 - 仅在必要时进行反冲洗池过滤器,因为它在此过程中使用了额外的水。§战略池畔美化环境 - 确保种植池灌木,使用栅栏或隐私筛查作为障碍或帮助减少风的水分流失
M-01:1/2 英寸膨胀填料 M-02:钢筋混凝土基础,根据结构图 M-03:铝包木窗(外部预加工,内部涂底漆) M-04:高密度聚乙烯 (HDPE) 卫生间隔断;地板安装和高架支撑 M-05:木板条;室外级乙酰化黄松木材,涂漆(ACCOYA) M-06:工程木柱,涂漆(底漆柱),根据结构图 M-07:加厚板,参见结构图 M-08:玻璃纤维门,参见门附表 M-09:木屋顶椽,根据结构图 M-10:卫生设备,参见卫生图 M-11:粘结梁,根据结构图 M-12:涂漆 6 英寸聚氨酯装饰条 (BORAL) M-13:4 英寸预制铝制排水沟至落水管 M-14:预制铝制百叶窗 M-15:灯具,参见电气图 M-16:榫槽乙酰化黄松 (ACCOYA) M-17:基础绝缘:2 英寸刚性绝缘; 24 英寸最小值,双向 M-18:防雪挡板 M-19:连续屋脊通风口 M-20:未使用 M-21:防溅块 M-22:管道系统,参见机械图纸
研究出版物 期刊出版物 Latif, A ., Ingarao, G., & Fratini, L. (2022)。通过摩擦搅拌固结铝合金碎片制造基于多材料的功能分级坯料。CIRP Annals, 71(1), 261-264。[影响因子:4.1,机械工程一区] Latif, A ., Ingarao, G., Gucciardi, M., & Fratini, L. (2022)。一种通过摩擦搅拌固结在铝合金废料回收过程中提高机械性能的新方法。国际先进制造技术杂志,119(3),1989-2005。[影响因子:3.4,机械工程一区] Puleo, R., Latif, A ., Ingarao, G., Di Lorenzo, R., & Fratini. L(2023)。通过搅拌摩擦固结回收铝屑的固体粘结标准设计。材料加工技术杂志,118080。[影响因子:6.3,机械工程第一季度] Ingarao, G., Amato, M., Latif, A., La Rosa, AD, & Fratini, L. 通过单步和多步搅拌摩擦固结工艺回收铝合金屑的生命周期评估。制造系统杂志。[影响因子:12.1,机械工程第一季度]