生物医学研究人员的梦想是将他们的发现转化为有效的治疗方法。俄勒冈州立大学卡尔森兽医学院的两名教员正在向这个目标迈进一步。Natalia Shulzhenko 博士几十年来一直在研究肠道粘膜免疫反应,大部分时间都在思考微生物群对维持动物健康的重要性。她从一开始就参与了一个研究领域,因此她具有独特的优势,能够认识到改变患者微生物群的好处。现在,Shulzhenko 博士已经开始了一个大型项目,帮助研究犬类微生物群的改变如何影响对肿瘤抗原疫苗接种的反应。在与耶鲁大学和犬类癌症联盟的研究人员合作的研究中,患有某些肿瘤类型的狗接种了表皮生长因子受体 (EGFR) 和人类表皮生长因子受体 2 (HER2) 的共用肽。这种疫苗可以诱导针对癌细胞上过度表达的 EGFR/HER2 蛋白的免疫反应,并延长患癌犬的生存期。由于微生物组组成对免疫反应有很大影响,Shulzhenko 博士正在同时研究疫苗引起的免疫和微生物组变化,以发现哪些微生物有助于对抗癌症。除了微生物组分析之外,还正在评估包括血细胞组成和转录组在内的许多免疫参数。Shulzhenko 博士随后将把这些测量值输入“跨王国网络分析”中,这是她与 Andrey Morgun 博士(俄勒冈州立大学药学院)合作开发的计算工具,以识别可以驱动良好疫苗反应的候选细菌。下一步将是使用粪便微生物组移植 (FMT) 或补充“益生菌”来改变患者的微生物组。在人类肿瘤学中,据报道,使用有反应的患者或健康捐赠者的微生物群进行 FMT 可以增强免疫调节抗癌疗法,但在狗身上缺乏此类研究。粪便微生物群移植可能除了增强对疫苗的反应外,还可能具有其他好处,并可用于治疗其他疾病。小动物内科助理教授 Stacie Summers 博士正在探索使用 FMT 治疗患有慢性肾病 (CKD) 的猫。
生物医学研究人员的梦想是看到他们的分离被转化为有效的治疗方法。俄勒冈州立大学卡尔森兽医学院的两名教职员工正在接近该目标。Natalia Shulzhenko博士数十年来一直在研究肠道的粘膜免疫反应,并且在大多数情况下,考虑了微生物组在维持动物健康方面的重要性。从一开始就成为研究领域的一部分,她是一个独特的立场,可以欣赏改变患者的微生物组的好处。现在,Shulzhenko博士开始了一个大型项目,以帮助研究犬微生物组的改变如何影响对肿瘤 - 抗原疫苗接种的反应。在与耶鲁大学和犬科联盟的研究人员的一项合作研究中,具有某些肿瘤类型的狗接种了表皮生长因子受体(EGFR)和人类表皮生长受体2(HER2)的共享肽。该疫苗可以诱导靶向过表达的EGFR/HER2蛋白在癌细胞上的过表达的免疫反应,并延长狗的癌症生存。由于微生物组组成对免疫反应具有深远的影响,因此Shulzhenko博士同时研究了疫苗诱导的免疫和微生物组的变化,以发现哪种微生物可以帮助结合癌症。除了微生物组分析外,还评估了包括血细胞组成和转录组在内的数量免疫参数。粪便微生物组移植可能会带来对疫苗反应增强的好处,并且可以用于治疗其他疾病。然后,Shulzhenko博士将将这些测量结果馈送为“ Transkingdom网络分析”,这是她与Andrey Morgun博士(俄勒冈州立大学药学院)合作开发的计算工具,以识别可以驱动有利疫苗反应的候选细菌。下一步将是使用粪便微生物组移植(FMT)改变患者的微生物组或补充为“益生菌”。在人类肿瘤学中,据报道具有反应患者或健康供体的菌群的FMT可增强免疫调节抗癌疗法,但狗缺乏此类研究。小动物内科医学助理教授Stacie Summers博士正在探索使用FMT治疗患有慢性肾脏疾病(CKD)的猫。
摘要:通过使用抗生素成功的牲畜行业的实践,该行业持续了五十年来,研究人员长期以来一直对抗生素生产的抗生素替代品感兴趣。益生菌可以潜在地减少牲畜中的肠道疾病并提高其生产力。这项研究的目的是将推定的益生菌与骆驼牛奶分离,并针对沙门氏菌感染以及宿主免疫发育进行测试。从沙特阿拉伯奶牛场的六个不同的骆驼牛奶样品中获得了13种不同的分离株。在六个分离株(PM1,PM2,PM3,PM4,PM5和PM6)中,三个显示革兰氏阳性特征对过氧化氢酶和溶血分析的反应负面反应。PM1,PM5和PM6显示出对禽病原体的显着非极性表面特性(> 51%疏水)和有效的抗菌活性,即S. enterica,S。typhi,S。aureus和E. coli。PM5表现出很大的益生菌特征;因此,进一步关注了它。pm5被16S rRNA测序方法鉴定为枯草芽孢杆菌OQ913924,并显示出相似性矩阵> 99%。使用体内鸡模型来获得益生菌的健康益处。在沙门氏菌感染后,粘膜免疫反应显着增加(p <0.01),并且没有任何挑战方案引起肠道含量感染后的死亡率或临床症状。S。肠杆菌在脾脏,胸腺和小肠中的效果显着降低。鸡肉粪中的肠肠s。肠载荷从口腔喂养的枯草芽孢杆菌PM5喂养的鸡中的CFU 7.2降低到5.2。益生菌喂养的鸡显示出缓冲的肠含量,并对丁酸(P <0.05)和肠道白介素1β(IL1-β),C反应性蛋白(CRP)和干扰素Gamma(IFN-γ)水平呈阳性(p <0.05)。此外,枯草芽孢杆菌PM5表现出与腹膜巨噬细胞的显着结合并抑制肠链球菌表面粘附,表明巨噬细胞中枯草芽孢杆菌PM5的共聚集。可以得出结论,补充益生菌可以改善肉鸡的生长性能以及针对肠道病原体的肉鸡质量。在不久的将来将这种益生菌引入商业家禽饲料市场可能会有助于缩小现在鸡肉育种和消费者需求之间存在的差距。
我们是一个国际生物科学家,保护主义者和环保主义者组的国际群体,他们多年来一直密切关注Pangolins的困境和保留。穿衣蛋白包含哺乳动物秩序的pholidota,其中包含在非洲多种栖息地(4种)和亚洲(4种)中发现的八种活物种,这些物种提供了重要的生态系统服务,包括提供“害虫”控制和改善土壤质量(Chao等,2020年)。它们仍然是世界上最受威胁和最受欢迎的哺乳动物物种(Gaubert等,2018; Sarah Heinrich等,2016)。一个多世纪以来,有许多人可以俘虏这些动物,但是很少有成功的例子,因为它们通常死于感染(Hua等,2015; Lihua等,2015)。在2016年,濒临灭绝的中国和马来亚式穿衣的基因组(图1)进行了测序并重新进行了两个重要的发现(Choo等,2016)。首先,据我们所知,穿山甲是唯一已知缺乏IFNE(Interferon Epsilon)基因(对粘膜免疫重要)的哺乳动物,这表明它们对病原体的抗性可能会降低。此外,我们发现穿山甲的热休克蛋白(HSP)基因家族数量减少,这表明诱导免疫供应的压力敏感性比其他哺乳动物谱系更重要。这些发现可能会有助于显然为什么圈养的穿衣经常屈服于感染。必须开发和利用新技术来确保保护穿衣蛋白的种群。利用基因组驱动的生物学见解,研究人员通过使环境,食物和水尽可能地卫生在适当的养父母的情况下,成功地建立了一个俘虏的马来人穿搭人群,直至第三次生成。这些穿衣可以用作重新建立大量天然种群和增强野生穿山甲种群的遗传库存,并有助于维持遗传多样性。值得注意的是,成功重新引入被俘虏的繁殖种群已经阻止了包括阿拉伯Oryx(Oryx Leucoryx)在内的许多特殊灭绝(Ostrowski et al。,1998),黄色 - 散发的亚马逊鹦鹉(Amazona Barbadensis)(Amazona Barbadensis)(Sanz and Grajal,1998年),欧洲bison(bisone bison) Alpine Ibex(Capra Ibex Ibex)(Stüwe和Nievergelt,1991年)和胡须秃鹰(Gypaetus barbatus)(Hirzel等,2004)。但是,如果没有所有主要利益相关者(包括政府,研究人员和公众)的合作,对Pangolins的成功保护仍然可能很远(Hefteron和Gaubert,2021年)。此外,需要重大努力来减少需求
尽管当前已批准的Covid-19疫苗具有显着的效率,但仍有几个机会继续开发针对SARS-COV-2和未来致命的呼吸道病毒。特别是,受限的疫苗接入和犹豫的免疫率有限。此外,当前的疫苗无法防止突破感染,导致病毒循环延长。为了改善通道,设计具有增强热稳定性的亚基疫苗,以消除对超冷链的需求。从该疫苗中排除传染性和遗传材料也可能有助于减少疫苗的犹豫。为了防止突破感染,探索了鼻内免疫以诱导粘膜免疫。由壳聚糖(CS)溶液中额外免疫助剂制成的受体结合结构域(RBD)多肽组成的原型疫苗诱导了1或2剂后实验室小鼠中的高水平的RBD特异性抗体。抗体反应耐用,高滴度在皮下疫苗接种后至少五个月持续存在。血清抗RBD抗体均包含IgG1和IgG2A同种型,这表明该疫苗诱导了混合的Th1/Th2反应。RBD疫苗接种无CS配方导致抗RBD反应最少。 比介绍剂量添加了CpG寡核苷酸在CS和RBD疫苗配方中比白介素12(IL-12)更有效地增加了抗体滴度。 在稳定性方面,疫苗在室温(21-22°C)或4°C下至少持续一个月时不会失去活性。RBD疫苗接种无CS配方导致抗RBD反应最少。比介绍剂量添加了CpG寡核苷酸在CS和RBD疫苗配方中比白介素12(IL-12)更有效地增加了抗体滴度。在稳定性方面,疫苗在室温(21-22°C)或4°C下至少持续一个月时不会失去活性。重要的是,生成的抗体与与SARS-COV-2变体相关的RBD突变体(包括Alpha,beta和Delta变体)的反应性,并抑制RBD与其同源受体血管紧张素转化酶2(ACE2)的结合。当鼻内递送时,疫苗会诱导RBD特异性粘膜IGA抗体,可防止上呼吸道中的突破性感染。总的来说,数据表明设计的疫苗平台具有多功能,适应性,并且能够克服当前Covid-19疫苗的关键限制。
肠粘膜免疫系统的基本作用是维持对腔抗原的耐受性,这是通过肠道居住的免疫细胞和由微生物组提供的两向相互作用的大量协调和多层相互作用来实现的。粘膜体液免疫反应(并且主要是分泌IgA)是主机调节分类学组成[1-7]空间组织[8-10]和微生物群的代谢功能[11-13]的主要手段。由共生微生物进行的最重要的母质功能之一是宿主胆汁酸的生物转化(BAS)[14]。BAS是宿主衍生的两亲分子,可作为乳化剂,可促进饮食脂质和脂溶性维生素的溶解和吸收[15]。bas主要使用胆固醇作为前体作为初级碱,然后将其运输并存储在胆囊中,直到后之前将其分泌到十二指肠。大约在分泌到肠道的所有BAS中的95%将在远端回忆[16,17]。在稳态条件下,逃脱这种回收过程的5%的BAS将到达结肠,在那里它们被共生肠道细菌修饰以成为次要BAS。肠道菌群通过不同的酶促反应修饰腔体BA生物化学:deconju-gation,脱氢,脱氢,脱氢,沉积和氧化还原。细菌BA生物转化的第一个限制步骤是甘氨酸或牛磺酸与BAS(deCongugation)的裂解,这是通过细菌胆汁盐羟化酶(BSH)酶进行的。BAS的细菌解偶会阻止BAS通过顶端钠BA转运蛋白(ASBT)的主动转运[18]。人类肠道微生物群的遗传研究表明,所有主要细菌门的成员都具有BSH基因,并且能够进行BA decondongation [19,20]。与脱糖性相反,在企业门的几个含量中(例如,乳酸杆菌科,梭状芽孢杆菌科,乳甲苯性乳甲苯性乳酸菌,浓度)似乎是主要负责的,用于随后的酶促反应[21,22]。此外,肠道菌群可以通过直接影响管腔中共轭BAS的平衡的能力来调节BAS中BAS的合成[23]。疏水性碱基浓度的微摩尔移位可以刺激肠上皮细胞apopto- Sis [24,25],因此BAS的肠肝循环是通过负面反馈机制运行的严格调节过程,该过程通过生理上良性的BA组成和中心含量维持生理上的良性BA组成和中心。最近,BAS被描述为信号分子,它们是核法尼X受体(FXR)和Takeda G蛋白偶联受体(TGR5)的配体[26]。
全球大流行很可能是通过人畜共患病传播到人类的,其中呼吸道病毒感染与粘膜系统相关的气道。在已知的大流行中,五个是由包括当前正在进行的冠状病毒2019(Covid-19)在内的呼吸道病毒引发的。在疫苗开发和治疗剂中的惊人进步有助于改善传染剂的死亡率和发病率。然而,生物体复制和病毒通过粘膜组织传播,不能由肠胃外疫苗直接控制。需要一种新型的缓解策略,以引起强大的粘膜保护并广泛中和活动以阻碍病毒进入机制并抑制传播。本综述着重于口腔粘膜,这是病毒传播的关键部位,也是引起无菌免疫力的有希望的靶标。除了审查人畜共患病毒病毒和口腔粘膜组织发起的历史大流传学外,我们还讨论了口服免疫反应的独特特征。我们解决了与开发新型治疗剂有关以在粘膜水平引起保护性免疫的障碍和新的前景,以最终控制传播。
1感染,免疫和炎症研究与教学部,UCL大奥蒙德街儿童健康研究所,伦敦吉尔福德街30号,英国吉尔福德街30英国3JH,4光学显微镜核心设施,UCL大奥蒙德街儿童健康研究所,伦敦吉尔福德街30号,伦敦WC1N 1EH,英国5 UCL基因组学,Zayed基因组学中心,儿童研究中心,吉尔福德街20号,英国伦敦WC1N 1DZ吉尔福德街20号。电话。: +44-(0)207905-2369;传真: +44-(0)207905-2882†这些作者共享第一个作者身份。‡这些作者分享了高级作者身份。§当前地址:UCL Great Ormond Street儿童健康研究所,分子和细胞免疫学的感染,免疫和炎症研究与教学部,英国伦敦WC1N 1EH吉尔福德街30号。
在固态电解质(SSE)中使用金属有机框架(MOF)一直是一个非常有吸引力的研究领域,在现代世界中引起了广泛关注。SSE可以分为不同的类型,其中一些可以与MOF结合使用,以通过利用高表面积和高孔隙率来改善电池的电化学性能。但是,它也面临许多严重的问题和挑战。在这篇综述中,分类的不同类型的SSE类型,并描述了添加MOF后这些电解质的变化。之后,引入了这些带有MOF的SSE,以用于不同类型的电池应用,并描述了这些SSE与MOF结合在细胞电化学性能上的影响。最后,提出了MOFS材料在电池应用中面临的一些挑战,然后给出了一些解决MOF的问题和开发期望的解决方案。