结果:鉴定了24个革兰氏阳性分离株,其中10(F1-F10)在模拟胃肠道液中显示出可靠的生存能力。这10种菌株对CACO-2细胞表现出极好的粘附力和强大的自动凝集特性。他们还具有拮抗和聚集病原体的能力(金黄色葡萄球菌ATCC 25923,Salmonella braenderup H9812,Escherichia coli ATCC 25922和Pseudomonas pseudomonas pao1)和Aeruginosa pao1),erauginosa pao1),所有菌株均可依靠2 o 2 o 2 o 2 o 2 o 2 o的能力。清除1,1-二苯基-2-苯羟基(DPPH)自由基,表明一定水平的抗氧化活性。安全性测试没有溶血活性,除了F6以外,所有其他人对抗生素均高度敏感,对16种抗生素的敏感性超过62.5%。非常明显地,F4(Reuteri乳酸杆菌)和F10(Brevis乳杆菌)在模拟的胃肠道中表现出异常的生存力,并与强大的生长潜力相结合,增强的粘附效率,显着的抗体和抗氧化特性。
电催化是增强水分拆分设备的效率和成本效益的关键,从而有助于氢作为一种干净,可持续的能源载体的发展。这项研究着重于在碱性条件下支持氢纳米颗粒催化剂(RU NPS/TIN)的RU纳米颗粒催化剂的合理设计。AS设计的催化剂在63 mV和长期稳定性下表现出高质量活性为20 a mg-1 ru,超过了商业电解器的当前基准。结构分析突出了锡底物对RU纳米颗粒性质的有效修饰,而密度功能理论计算表明,Ru颗粒对TIN底物的强粘附力以及通过粒子支持的相互作用的氢吸附能量的有利调节。最后,我们使用RU NPS/TIN作为氢进化反应催化剂组装一个阴离子交换磁极电解酶,该催化剂在5 a cm-2下以1000 h的速度运行,超过1000小时,超过可忽略的降解,超过了商业电动器的性能要求。我们的发现有助于设计有效的催化剂,以利用粒子支持相互作用来分裂水。
紧密连接在上皮细胞和内皮细胞中形成细胞旁屏障,并调节液体、分子的扩散以及细胞在组织隔室中的渗透。紧密连接由一组整合膜蛋白组成,包括紧密连接蛋白家族、紧密连接相关 Marvel 蛋白家族、连接粘附分子家族以及锚定细胞骨架的蛋白质,例如小带闭合蛋白和扣带蛋白家族。神经递质或细胞因子等多种因素以及缺血/缺氧、炎症、肿瘤发生、磷酸化/去磷酸化、泛素化和棕榈酰化等过程调节紧密连接蛋白。紧密连接蛋白参与导致神经胶质瘤形成的肿瘤发生过程。在神经胶质瘤中,紧密连接蛋白、闭合蛋白和小带闭合蛋白-1 丰度明显失调,并且已观察到它们的错位。细胞间粘附力减弱和细胞分离是导致神经胶质瘤渗入周围组织的原因。此外,血脑屏障的旁细胞通透性(由紧密连接蛋白参与形成)会影响肿瘤周围水肿的发展,同时也会影响药物向神经胶质肿瘤的输送速度。了解脑肿瘤中的连接和旁细胞环境对于预测神经胶质肿瘤进展和化疗药物输送的可行性至关重要。这些知识也可能阐明高级别和低级别神经胶质瘤之间的差异。
基因表达的改变,从而调节生理活性,例如生长和受精。[1-5]这些电子信号被认为是快速响应的长距离信号通路,对植物的生存不利。[1,5,6]因此,研究植物电生理学通过先进的电子技术为植物的疑问和干预提供了坚实的基础,[7-11]具有可持续食品供应和环境保护的潜在好处。非侵入性植物电生理学优先是侵入性的,因为获得的信号无需损害植物组织而获得的信号。[12]但是,植物的不平坦和不规则的表面地形为与电极紧密接触的大障碍带来了巨大的障碍。[11]特别是,大多数植物都会形成多种形态(直,分支,螺旋等)的三个(类似头发的附属物)和变化的密度,[13]可能具有挑战性地形成并遵守包括凝胶电极在内的常规电极。尽管使用软凝胶和粘合水凝胶可以改善与生物组织的接触,但[14-17]预先形成的固体水凝胶的平面表面和明确定义的几何形状阻碍了它们与毛茸茸的植物表面的综合接触(图1 A-I I和图S1:图S1:支持信息)。这种缺乏一致性将减少粘附力和信号传递稳定性和忠诚度。[18]
(DC-GDPAU)是一个直流辉光放电等离子体实验,由艾因夏姆斯大学(埃及)物理系设计、建立和运行。该实验的目的是通过将印刷电路板(PCB)暴露于等离子体来研究和改善它的某些特性。该装置由圆柱形放电室组成,其中固定有可移动的平行圆形铜电极(阴极和阳极)。它们之间的距离为12厘米。该等离子体实验在氩气的低压范围(0.15 - 0.70 Torr)下工作,最大直流电源为200 W。在两个电极之间每厘米处测量和计算了等离子体的帕申曲线和电等离子体参数(电流、伏特、功率、电阻)。此外,使用双朗缪尔探针获得了不同径向距离下的电子温度和离子密度。电子温度(KT e )保持稳定在6.58至10.44 eV范围内;而离子密度(ni )范围为0.91×10 10 cm −3 至1.79×10 10 cm −3 。采用数字光学显微镜(800倍)比较等离子体暴露前后对电路布局成形的影响。实验结果表明,等离子体暴露后电导率增加,铜箔表面的粘附力也有所改善。电导率的显著增加与样品表面的位置以及暴露时间直接相关。这表明所获得的结果对于开发用于不同微电子设备(如航天器上的设备)的PCB制造非常重要。
聚二甲基硅氧烷 (PDMS) 泡沫作为下一代聚合物泡沫材料之一,表面粘附性差且功能有限,极大地限制了其潜在应用。制备具有多种功能的先进 PDMS 泡沫材料仍然是一项关键挑战。在这项研究中,报道了前所未有的自粘性 PDMS 泡沫材料,该材料具有蠕虫状粗糙结构和反应性基团,用于通过简便的硅胶发泡和浸涂策略以及随后的硅烷表面改性来制造用 MXene/纤维素纳米纤维 (MXene/CNF) 互连网络装饰的多功能 PDMS 泡沫纳米复合材料。有趣的是,这种自粘性 PDMS 泡沫与混合 MXene/CNF 纳米涂层产生强的界面粘附力。因此,优化的PDMS泡沫纳米复合材料具有优异的表面超疏水性(水接触角≈159o)、可调的电导率(10-8至10Sm-1)、在宽温度范围(-20至200oC)和复杂环境(酸、钠和碱条件)中稳定的压缩循环可靠性、出色的阻燃性(LOI值> 27%且产烟率低)、良好的隔热性能和在各种应力模式和复杂环境条件下可靠的应变感应。它为合理设计和开发具有多功能性的先进PDMS泡沫纳米复合材料提供了新途径,可用于智能医疗监控和防火隔热等各种有前景的应用。
口腔以伤口和溃疡的形式表现出来(Nguyen&Hiorth,2015; Sankar等人,2011年40)。 微生物,唾液和组织剪切力的动态环境使局部治疗变得复杂。 由于粘合剂故障(<24 h),结构完整性的丧失或其组合43(Boateng等,2014; Davidovich-Pinhas&bianco-Peled,2014; Hearnden等,2012; Hearnden et al。,2012; Laffleur 44&Kküpepersan al an al al an al an al an al an al an al an al an al an an al an al an al an an al an al an al an al an al an al an al an al an al and a an and 201; 替代方案是液体45或凝胶的频繁应用(3-5/天),导致患者依从性差。 商业粘膜粘附设计基于水46肿胀聚合物,这些聚合物通过组织表面的聚合物纠缠粘在软组织上(Smart,47,2014年)。 设计相对安全,但是不受控制的吸水会导致48个粘附力随着时间的推移而恶化(0.5-5 kPa,假设面积为2 cm 2)(El Azim等,2015; Kumria等; Kumria et 49 al。 因此,水凝胶50结构在脱落前的固定量为6-8小时(Nafee等,2004; Perioli等,51 2004; Santocildes-Romero等,2017)。 如果肿胀52稳定,粘附性设计将得到改善,从而防止凝聚力和粘合性衰竭(Smart,2014)。 延长保留率将导致口腔病变处增加接触时间增加,扩展治疗剂量并提供屏障54(Colley等,2018; Santocildes-Romero等,2017)。 55口腔以伤口和溃疡的形式表现出来(Nguyen&Hiorth,2015; Sankar等人,2011年40)。微生物,唾液和组织剪切力的动态环境使局部治疗变得复杂。由于粘合剂故障(<24 h),结构完整性的丧失或其组合43(Boateng等,2014; Davidovich-Pinhas&bianco-Peled,2014; Hearnden等,2012; Hearnden et al。,2012; Laffleur 44&Kküpepersan al an al al an al an al an al an al an al an al an al an an al an al an al an an al an al an al an al an al an al an al an al an al and a an and 201;替代方案是液体45或凝胶的频繁应用(3-5/天),导致患者依从性差。商业粘膜粘附设计基于水46肿胀聚合物,这些聚合物通过组织表面的聚合物纠缠粘在软组织上(Smart,47,2014年)。设计相对安全,但是不受控制的吸水会导致48个粘附力随着时间的推移而恶化(0.5-5 kPa,假设面积为2 cm 2)(El Azim等,2015; Kumria等; Kumria et 49 al。因此,水凝胶50结构在脱落前的固定量为6-8小时(Nafee等,2004; Perioli等,51 2004; Santocildes-Romero等,2017)。粘附性设计将得到改善,从而防止凝聚力和粘合性衰竭(Smart,2014)。延长保留率将导致口腔病变处增加接触时间增加,扩展治疗剂量并提供屏障54(Colley等,2018; Santocildes-Romero等,2017)。55
美国纽约埃奇伍德 — Parkell 是牙科材料和设备制造领域公认的全球领导者,拥有 70 多年的历史,现自豪地宣布推出全新 Brush&Bond® MAX 粘接系统。Brush&Bond MAX 是基于 Brush&Bond® 数十年成功经验的新一代粘接剂,专注于在牙医最常使用粘接剂的表面(牙釉质和牙本质)上提供最佳性能。与领先的竞争对手相比,这种单瓶系统具有更强的粘附力和更高的粘接强度,因此临床医生可以更有信心地提供经得起时间考验且没有术后敏感度的修复体。Parkel 的 Brush&Bond MAX 的一个主要区别在于引入了简化的触摸应用技术,这是在将许多其他粘接剂应用于预备表面时所需的擦洗步骤的替代方案,其中一些需要长达 20 到 30 秒的主动擦洗。在推出该产品之前,Parkell 进行了一项调查,超过 55% 的受访医生目前使用需要擦洗技术的粘合剂,他们不确定自己是否能覆盖整个预备表面。使用 Brush&Bond MAX,牙医只需将经过化学处理的活化剂刷头浸入 Brush&Bond MAX 液体中,然后将其接触预备表面,来回移动以吸取更多液体,直到整个预备表面都湿润。
图 S1. 皮升级孵化器阵列的制作方案。孵化器图案由 2D CAD 软件(DraftSight,法国 Dassault Systèmes SE)设计。孵化器的设计直径为 30 µm。首先将光刻胶(ZPN 1150-90,日本 Zeon 公司)以 2500 rpm 的转速旋涂在玻璃基板上 30 秒。然后,使用标准光刻工艺对光刻胶膜进行图案化。光刻胶膜的图案化残留物(高度约为 10 µm 的微柱)被用作孵化器阵列的模板。接下来,采用旋涂技术(旋转速度:4000 rpm)将氟惰性溶剂(CT-solv.180,AGC Inc.,日本)中的非晶态氟聚合物(Cytop CTX-809SP2,AGC Inc.,日本)沉积在模板上。之后,在涂有氟聚合物的基板上沉积 PDMS 薄膜。薄膜结构有助于抑制基板因内部应力而表现出的自弯曲现象。这意味着通过采用薄膜结构可以保持 PDMS 培养箱阵列和玻璃皿之间的界面粘附力。在这方面,我们采用旋涂沉积工艺来制备基于 PDMS 的培养箱阵列。将含有固化剂的 PDMS(Sylgard 184,陶氏化学公司,美国)的低聚物溶液旋涂在模板上并固化。 PDMS 膜的最终厚度约为 20 µm。然后,将完成的 PDMS 膜从模板上剥离。使用 LEXT OLS4100 激光扫描显微镜(日本奥林巴斯)确认 PDMS 膜的图案。
循环肿瘤细胞是原发性肿瘤和远处转移之间的关键环节,但一旦进入血液,粘附力丧失就会诱导细胞死亡。为了确定与黑色素瘤循环肿瘤细胞存活相关的机制,我们进行了 RNA 测序,发现分离的黑色素瘤细胞和分离的黑色素瘤循环肿瘤细胞通过上调脂肪酸 (FA) 转运和 FA β 氧化相关基因来重新连接脂质代谢。在黑色素瘤患者中,FA 转运蛋白和 FA β 氧化酶的高表达与无进展生存期和总生存期的降低显着相关。黑色素瘤循环肿瘤细胞中表达最高的调节剂包括肉碱转移酶肉碱 O-辛酰基转移酶和肉碱乙酰转移酶,它们控制过氧化物酶体衍生的中链 FA 向线粒体的穿梭,为线粒体 FA β 氧化提供能量。抑制肉碱 O-辛酰转移酶或肉碱乙酰转移酶,并用过氧化物酶体或线粒体脂肪酸β-氧化抑制剂硫利达嗪或雷诺嗪进行短期治疗,可抑制小鼠黑色素瘤转移。肉碱 O-辛酰转移酶和肉碱乙酰转移酶耗竭可通过补充中链脂肪酸来挽救,这表明过氧化物酶体脂肪酸供应对于非粘附性黑色素瘤细胞的存活至关重要。我们的研究发现,针对过氧化物酶体和线粒体之间基于脂肪酸的串扰是抑制黑色素瘤进展的潜在治疗机会。此外,发现美国食品和药物管理局批准的药物雷诺嗪具有抗转移活性,具有转化潜力。