■词汇表1)基因组选择(GS):一种基于有关DNA差异的信息来预测和选择个人遗传能力的方法。关于DNA和果实特征差异的数据,使用大量品种和菌株作为训练数据对两者之间的关系进行建模,并且基于“基因组预测(GP)模型”预测个体的遗传能力。可以预测未来在发芽阶段可以实现的水果的特征。注2)全基因组关联研究(GWAS):一种使用数学公式来建模DNA与果实特征的差异与大量品种和菌株中的果实特征之间的关系,并在统计学上检测到果实特征和相关DNA的差异。一旦揭示了与果实性状相关的DNA差异,可以通过寻找DNA差异的附近来识别控制果实性状的候选基因。注意3)下一代序列:可以一次解码大量DNA序列的设备。注4)单核苷酸多态性(SNP):DNA是一种称为脱氧核糖核酸的物质,由四种类型的碱基组成:腺嘌呤(a),胸腺胺(T),鸟嘌呤(G)和细胞儿童(C)。品种之间的碱基差异称为单核苷酸多态性。注5)Infinium系统:Illumina Co.,Ltd.提供的单个核苷酸多态性检测系统。注6)GRAS-DI(由随机扩增子测序 - 主测序引导的基因分型)系统:一种由丰田汽车公司开发的单核苷酸多态性检测系统。 ■研究项目这项研究是在以下项目的支持下进行的:
夜间(晚上 8 点至 10 点的 1 小时) 所有车型 97.0%(77.6%) 96.6%(75.5%) 32.3%(24.1%) 小型车 52.3%(28.4%) 49.7%(29.0%) 31.8%(23.3%) 大型车 12.1%(6.9%) 13.9%(8.0%) 19.8%(13.3%)
1。Chakravarty D,Johnson A,Jeffrey S等。 J Clin Oncol。 2022; 40(11):1231-1258 doi:10.1200/jco.21.02767。 2。 纪念Sloan Kettering癌症中心。 https://www.mskcc.org/news/first-drug-targeting-her2-mutant-non-small-cell-cell-cell-cancer-cancer--cancer-cancer-cancer-fda。 2022年11月30日访问。 3。 未经NCCN肿瘤学临床实践指南(NCCN指南®)的许可引用了非小细胞肺癌v.2.2023。 ©国家综合癌症网络,2023年。 保留所有权利。 2023年3月6日访问。 要查看该指南的最新版本,请在线访问nccn.org。 4。 Lindeman Ni,Cagle PT,Aisner DL等。 Arch Pathol Lab Med。 2018; 142(3):321-346 doi:10.5858/arpa.2017-0388-CP。 5。 Pennell NA,Arcila ME,Gandara DR,West H. Am Soc Clin Clin Oncol Educ Book。 2019; 39:531-542 doi:10.1200/edbk_237863。 6。 Sadik H,Pritchard D,Keeling DM等。 JCO Precis Oncol。 2022; 6:e2200246。 doi:10.1200/po.22.00246。Chakravarty D,Johnson A,Jeffrey S等。J Clin Oncol。2022; 40(11):1231-1258 doi:10.1200/jco.21.02767。2。纪念Sloan Kettering癌症中心。https://www.mskcc.org/news/first-drug-targeting-her2-mutant-non-small-cell-cell-cell-cancer-cancer--cancer-cancer-cancer-fda。2022年11月30日访问。3。未经NCCN肿瘤学临床实践指南(NCCN指南®)的许可引用了非小细胞肺癌v.2.2023。©国家综合癌症网络,2023年。保留所有权利。2023年3月6日访问。要查看该指南的最新版本,请在线访问nccn.org。4。Lindeman Ni,Cagle PT,Aisner DL等。Arch Pathol Lab Med。2018; 142(3):321-346 doi:10.5858/arpa.2017-0388-CP。5。Pennell NA,Arcila ME,Gandara DR,West H. Am Soc Clin Clin Oncol Educ Book。 2019; 39:531-542 doi:10.1200/edbk_237863。 6。 Sadik H,Pritchard D,Keeling DM等。 JCO Precis Oncol。 2022; 6:e2200246。 doi:10.1200/po.22.00246。Pennell NA,Arcila ME,Gandara DR,West H. Am Soc Clin Clin Oncol Educ Book。2019; 39:531-542 doi:10.1200/edbk_237863。6。Sadik H,Pritchard D,Keeling DM等。JCO Precis Oncol。2022; 6:e2200246。doi:10.1200/po.22.00246。
最初在:Nukom,Astrid; Classens,Nathie H P;骨骼,亚历山德拉F;斯特曼,雷蒙德;玛丽亚·福尔曼(Foldmann); Nineman,Mailks; Jasen,Nicolas J G; Nineman,jops;绿色,弗洛里斯;冻结,琳达S;本纳斯,曼农J n l; Breur,John M P P J;哈斯,费利克斯;回来,Mirelle N; Longswaran,Thhushiha;是的,贝蒂娜;计数,Raimund;戴夫(Dave),hitendu;辛普森,约翰; Pushparajah,库布兰;凯利(Kelly),克里斯托弗(Christopher J); Arulkuman,Sophie;卢瑟福,玛丽A;律师Serena J;咀嚼,安德鲁;克尼尔施,沃尔特;坚强,结婚c a; Monique M的Schonefield;哈格曼,科尼利亚; Beatrice Lathal;先天性心脏Direh(EU-ABC)的欧洲大脑(2024)。围手术期与早期神经发育有关的围手术期脑损伤AMG儿童白色严重的先天性心脏Direy:欧洲合作的结果。期刊或儿科,266:113838。doi:https://doi.org/10,1016/j.2023,113838
crispr:洛杉矶(TE)the Frontier利用基因组信息提供高度个性化的治疗计划是医疗保健的一场革命。通过仔细检查个体的DNA,医疗保健提供者可以鉴定出影响疾病风险,治疗效率以及对药物副作用的可疑性的遗传变异。随着CRISPR的出现,医疗保健景观经历了撤销的转变(群集定期间隔短的短质体重复序列)技术,尤其是开创性的CRISPR/CAS9系统[9]。这项创新已成为基因技术最锋利的工具之一,类似于分子剪刀,可以精确地修改遗传密码[10]。传统的基因检测方法经常在特殊性和特殊性中抓取限制性。crispr通过使研究人员和卫生保健提供者能够以无与伦比的精度来查明和修改基因组的特定基因或区域,从而提高了基因检测的准确性[11]。这种精度有助于确定影响疾病风险,治疗功效和对药物副作用的易感性的细微遗传变异。CRISPR在基因组编辑方面的效率对个性化的医学具有深远的影响。该技术对基因组进行快速而精确的修改的能力简化了基因检测过程。除了诊断之外,CRISPR为基于确定的遗传变异而为靶向疗法铺平了道路。这个目标
人工智能(AI)和机器学习(ML)正在推动精确农业的革命性变化,提供农民工具以最大程度地提高农作物的产量,同时最大程度地减少资源的使用。本文研究了AI驱动的技术如何分析来自无人机,传感器和卫星图像的数据,以提供可行的见解以进行优化的作物管理。通过确定最有效的种植时间表,检测早期的疾病迹象,并提供实时建议,以灌溉,施肥和农药施用,AI可以实现更精确和可持续的农业实践。AI与其他新兴技术(例如无人机和机器人技术)的整合,通过促进对设备的预测维护,并确保农作物获得理想的水,养分和害虫控制,从而提高了农业生产力。案例研究强调了AI在某些农作物中的产量最多增加了30%,这强调了其革新现代农业的潜力。本文还探讨了AI驱动的模型如何通过更有效地利用资源来减少环境影响,从而帮助农民平衡生产力与可持续性。的挑战,例如数据可访问性和小农户采用AI技术,以及AI在缓解与气候变化和可变性相关的风险方面的潜力。驱动的精确农业为改善粮食安全和确保长期农业可持续性提供了重要的机会。
摘要。使用单个精度的渗透点反应在操作天气预测中变得越来越普遍。同时,气候模拟通常仍以双重精度运行。这样做的原因可能是多种多样的,范围从对依从性和保护法的关注到对缓慢过程的未知效果,或者仅仅是较不频繁的机会和较高的验证计算成本。使用基于合奏的统计方法,Zeman和Schär(2022)可以检测区域天气和气候模型Cosmo的双重和单位仿真之间的差异。但是,这些差异是最小的,通常只能在模拟的第一个小时或几天内检测到。为了评估这些差异是否与区域气候模拟相关,我们已经对100年的区域气候下限实验(Euro-Cordex)进行了为期10年的集合模拟,并与100个合奏成员进行了单一和双重精度。通过基于所有测试变量的分布差异,我们仅在每12或24小时以47个输出变量应用47个输出变量的统计测试每12或24 h,每12或24 h都会发现单精度气候模拟的排斥率略有增加。拒绝率的增加远小于模型中水平差异系数的较小变化而产生的。因此,我们认为它可以被模型不确定性掩盖,因为它被忽略了。据我们所知,这项研究代表了迄今为止对
医学 /临床遗传学。在以下逻辑序列 - 遗传疾病,倾向和先天性异常中,遗传序列 - 遗传疾病的遗传疾病和单因素病理学,染色体疾病,染色体疾病和先行异常的遗传疾病以及与性病学,病原体,病原体,遗传学,临床诊断,诊断,诊断,染色体异常相关的染色体疾病,染色体异常和先行异常。还包括遗传问题的遗传问题,线粒体疾病,由动态突变确定的疾病和DNA修复中的异常。重点还放在胃肠病学,肺病学,肾脏学,神经病学,眼科,内分泌学,皮肤病学,免疫学和其他领域的遗传性疾病上。
摘要 为了评估综合全球定位系统 (GPS)、惯性导航系统 (INS) 和高分辨率线阵 CCD 传感器数据所得地面点的几何精度,本文介绍了光束法平差的数学模型以及地面点可达精度与地面控制点 (GCPS) 数量和分布、GCPS 和检查点的图像测量误差以及轨道拟合多项式阶数的关系的实验结果。介绍在俄亥俄州中部麦迪逊县建立的大地控制网,用于测试模拟的新一代 IKONOS 高分辨率卫星影像的精度。基于机载高分辨率立体相机 [I~RSC] 系统和模拟的 IKONOS 影像(SpaceImaging, Inc.),进行了各种实验方案,涉及不同立体模型配置的几何强度、GCPS 数量和分布的影响以及 GCPS 和检查点的图像测量误差的影响。最后通过本次试验研究提出了一些提高地面点几何精度的建议和建议。