引言葡萄球菌是在环境中抵抗最大的非孢子细菌。在干燥的临床样品中可能存活数月,具有相对耐热性,可以耐受盐浓度升高。然而,尽管存在抗菌素,改善了卫生条件和医院感染控制措施,但这种微生物仍然是人类最重要的病原体之一。健康的个体通过金黄色葡萄球菌从母乳喂养中间歇性地殖民,并且可以在鼻咽中容纳微生物,偶尔在皮肤上,而在阴道中很少。在这些部位,金黄色葡萄球菌可能通过直接接触或气溶胶污染患者的皮肤和粘膜,无生命的物体或其他患者,从而导致致命的感染因毒力或对当前使用的抗菌药物的抗性而导致致命感染。葡萄球菌葡萄球菌引起的感染病例部分抗性抗生素,例如万古霉素,而阴性葡萄球菌凝结酶的报道必须发展出抗性。因此,需要快速有效地识别这些微生物出现的所有情况。链球菌是抗抗生素时代医院感染的最大原因,导致感染和产后妇女死亡。肠球菌的重要性越来越重要,因为由于传统上用于治疗这些感染的抗生素几乎完全抵抗力,引起了医院感染。尽管目前不是医院感染的重要原因,但是即使在免疫能力的患者中,它们也会引起非常严重且经常致命的疾病,并且该药物的快速诊断很重要。最常见的肠球菌是:粪肠球菌(占病例的90%)和肠球菌粪便,患者的殖民能力较大,医院使用的污染表面或设备。它们对称为糖肽的抗生素具有敏感性或可变性,例如万古霉素和二甲苯蛋白酶。目前有天然可抗性的共生菌株可以从住院的患者中隔离,但尚无法引起暴发,但应正确识别。初步鉴定链球菌和葡萄球菌的鉴定基于液体培养基中存在的形态。由于链球菌是通常的长链,葡萄球菌以椰子的形式证明了葡萄卷曲或分组。识别推定始于对RAM血板上的主要接种,该接种应在5%CO²中孵育(蜡烛方法或煤炭2)。葡萄球菌菌落通常更大,凸面,着色范围从白色到黄色,并且可能有溶血。应注意的是,金黄色葡萄球菌中淡黄色的发育仅在室温下长时间孵育(72 h)后才发生。链球菌菌落倾向于较小(untiforms),并且总溶血卤素(β和α溶血)。p riva da c atalase带有细菌环或牙签将可疑菌落的中心收集,并摩擦到玻璃刀片中。将3%过氧化氢下降到此涂片上,并观察到气泡的形成。对于家族微核心素(葡萄球菌),证明通常为正,而对于链球菌家族(链球菌)为阴性。
摘要:FUT8 是一种必需的 α -1,6-岩藻糖基转移酶,可使 N-糖链最内层的 GlcNAc 发生岩藻糖基化,这一过程称为核心岩藻糖基化。在体外,FUT8 表现出对双触角复合 N-糖寡糖 (G0) 的底物偏好,但 N-糖链所附着的底层蛋白质/肽的作用仍不清楚。在这里,我们用一系列 N-糖寡糖、N-糖肽和 Asn 连接的寡糖探索了 FUT8 酶。我们发现底层肽在少甘露糖(低甘露糖)和高甘露糖 N-糖链的岩藻糖基化中发挥作用,但对复合型 N-糖链不起作用。使用饱和转移差异 (STD) NMR 光谱,我们证明 FUT8 可识别 G0 N-糖链的所有糖单元和大多数氨基酸残基 (Asn-X-Thr),这些残基可作为寡糖基转移酶 (OST) 的识别序列。在存在 GDP 的情况下观察到最大的 STD 信号,这表明 FUT8 必须先与 GDP-β-L-岩藻糖 (GDP-Fuc) 结合才能最佳地识别 N-糖链。我们利用 CHO 细胞的糖基化能力基因工程来评估 FUT8 在具有一组特征明确的治疗性 N-糖蛋白的细胞中对高甘露糖和复合型 N-糖链的核心岩藻糖基化。这证实了核心岩藻糖基化主要发生在复合型 N-糖链上,尽管显然只发生在选定的糖基位点上。消除细胞中复合型糖基化能力(KO mgat1)表明,当转化为高甘露糖时,具有复合型 N-糖的糖基位点会失去核心岩藻糖基化。然而有趣的是,对于在有效获取四天线 N-糖方面并不常见的促红细胞生成素,在高甘露糖 N-糖上,三个 N-糖基化位点中有两个获得了岩藻糖基化。对几种蛋白质晶体结构的 N-糖基化位点的检查表明,核心岩藻糖基化主要受 N-糖的可及性和性质的影响,而不是受底层肽序列的性质的影响。这些数据进一步阐明了细胞体外和体内不同的 FUT8 受体底物特异性,揭示了促进核心岩藻糖基化的不同机制。关键词:FUT8、核心岩藻糖基化、N-糖基化、STD NMR、酶动力学、高甘露糖N-聚糖、复合N-聚糖、寡甘露糖型N-聚糖■ 引言
微生物的多重耐药性:综述 1 Wartu JR、*1 Butt AQ、1 Suleiman U.、1 Adeke M.、1 Tayaza FB、2 .Musa BJ 和 3 Baba, J. 1 尼日利亚卡杜纳州立大学微生物学系科学学院 2 尼日利亚博尔诺州迈杜古里 WHO 国家/ITD 实验室 UMTH 3 尼日利亚拉派伊易卜拉欣巴班吉达大学微生物学系 通讯作者的电子邮件地址:afia.butt8@gmail.com 电话:+2348130010675 摘要 多重耐药性 (MDR) 是指某些微生物能够抵抗多种抗菌剂的作用。MDR 包括对多种抗菌、抗真菌、抗病毒和抗寄生虫药物具有耐药性的微生物。某些微生物对某些通常会杀死它们或限制其生长的化学物质(药物)表现出类似的活性,这种现象称为抗生素耐药性(AMR)。多重耐药性可分为原发性耐药性、继发性耐药性、内在耐药性、广泛耐药性和临床耐药性。产生耐药性的抗生素包括β-内酰胺类、糖肽类、氨基糖苷类、磺胺类、头孢菌素类等。抗菌药物的作用方式包括细胞壁合成抑制剂、蛋白质合成抑制剂、关键代谢途径阻断剂、核酸合成抑制剂等。细菌经常产生耐药性,这可能是通过多种生化机制之一实现的,例如突变、破坏或失活以及细菌之间通过结合、转化和转导等多种方式进行的物质外排或遗传转移。 MDR原虫的作用方式是通过减少药物吸收、通过P-糖蛋白和其他运输ATP酶从寄生虫中输出药物等实现的。MDR蠕虫的作用方式是通过药物靶点的基因变化、药物运输的变化、药物代谢等实现的。抗病毒药物的作用方式通常靶向具有逆转录酶活性的病毒DNA聚合酶来抑制病毒复制。MDR真菌的作用方式是它们学会了修改抗真菌药物靶点或最常见的是增加进入药物的流出量。有多种方法可以逆转这种耐药性,例如在看完每个病人后洗手,公众应彻底清洗生水果和蔬菜以清除耐药细菌和可能的抗生素残留,避免滥用抗生素等。关键词:微生物,多重耐药性(MDR)引言多重耐药性(MDR)是某些微生物对多种抗菌药物表现出的耐药性。MDR微生物对公众健康的威胁最大,因为它们对多种抗生素有耐药性。其他 MDR 包括对多种抗真菌、抗病毒和抗寄生虫药物具有耐药性的药物(Magiorakos,2014 年;WHO,2018 年)。多种生化和生理机制都可能是耐药性的罪魁祸首(Liu 和 Pop,2009 年;WHO,2014 年)。在抗菌剂的具体情况下,导致耐药性出现和传播的过程的复杂性不容小觑,而缺乏这些主题的基本知识是主要原因之一