癌症代谢是阐明肿瘤细胞与免疫细胞之间通信的关键因素。例如,在肿瘤细胞增殖过程中,糖酵解增加导致肿瘤细胞产生大量的L乳酸和TGF-β,从而通过促进肿瘤微环境中的调节性T细胞(TREG)的产生来阻止肿瘤免疫(1)。用2-脱氧葡萄糖(一种糖酵解的抑制剂)治疗可通过减少TREG产生来增强抗肿瘤免疫力。值得注意的是,抗PD-1治疗已被证明可以激活T细胞,同时还促进了肿瘤微环境中的糖酵解。在某些患者中,抗PD-1抗体治疗可能导致肿瘤微环境中Treg的增殖增加,从而限制免疫检查点抑制剂的有效性。Xuekai等。建议,抗PD-1和抗TGF-β疗法的结合可能会提供一种新的解决方案来克服对抗PD-1疗法的抗性。Wang等。 进一步阐明了肿瘤微环境中的TGF-beta如何有助于抵抗抗PD-1治疗。 例如,PD-1在食管癌细胞逃避的免疫中起着至关重要的作用,该细胞表达高水平的TGF-β。 食管癌细胞产生的 TGF-β在与肿瘤相关的巨噬细胞中诱导M2-型,从而减少了通过PD-1/PD-L1途径参与特定抗肿瘤反应的CD8+ T细胞的种群。 此外,TGF-beta间接通过激活肿瘤微环境中的Treg来促进免疫抑制。 )。 Shen等。Wang等。进一步阐明了肿瘤微环境中的TGF-beta如何有助于抵抗抗PD-1治疗。例如,PD-1在食管癌细胞逃避的免疫中起着至关重要的作用,该细胞表达高水平的TGF-β。TGF-β在与肿瘤相关的巨噬细胞中诱导M2-型,从而减少了通过PD-1/PD-L1途径参与特定抗肿瘤反应的CD8+ T细胞的种群。此外,TGF-beta间接通过激活肿瘤微环境中的Treg来促进免疫抑制。)。Shen等。此外,脂质过氧化显着影响肿瘤微环境的调节(Xiao等人。富含脂质的肿瘤微环境可以通过CD36(一种脂肪酸转运蛋白)的上调在肿瘤相关的巨噬细胞中诱导M2型表型。Treg也表达了CD36,使其非常适合富含脂质的环境。在雌激素受体阳性(ER+BR)乳腺癌患者的低风险生存群体和高危生存群体之间的免疫活性,脂质生物合成和药物代谢方面存在差异。分析表明,高危患者表达高水平的ALOX15,一种相关的基因
乳腺癌是全球女性最常见的癌症,发病率逐年上升。乳腺癌领域的重大治疗进展带来了越来越多的治疗选择,而新生或获得性耐药仍然是一个持续的临床挑战。耐药性涉及多种机制,缺氧是众多原因之一。缺氧诱导因子-1α(HIF-1a)是一种关键的转录因子,能够调节细胞对缺氧的反应。HIF-1a 可以触发肿瘤细胞的无氧糖酵解,诱导血管生成,促进肿瘤细胞的增殖、侵袭和迁移,并导致多药耐药。本综述主要讨论了 HIF-1a 在耐药乳腺癌中的作用并强调了 HIF-1a 靶向治疗的潜力。
先前的研究假设大脑中的所有丝氨酸都完全来自糖酵解,而没有血丝氨酸的任何贡献。与普遍的教条相反,我们的研究表明,血液中的另提供丝氨酸在产后大脑发育中起着至关重要的作用。我们已经将SCL38A5鉴定为BBB的主要L-丝氨酸转运蛋白,这对于在产后早期从血液从血液中流入大脑至关重要。SLC38A5的缺失会导致发育延迟,行为障碍,脱氧脂脂的积累以及异常的突触和线粒体受损。我们的观察结果提出了一种独特的代谢途径,这对于早期产后脑发育至关重要,并且对丝氨酸缺乏综合征的病理具有影响。
线粒体功能障碍和糖酵解激活被广泛认为是癌症的标志 (5)。线粒体融合蛋白 2 (MFN2) 编码位于线粒体外膜上的 GTPase 蛋白,也称为增生抑制基因。它最初是在自发性高血压大鼠的血管平滑肌细胞中发现的 (6)。先前的研究表明,MFN2 疾病与高血压、腓骨肌萎缩症、肥胖症、糖尿病、动脉粥样硬化和癌症等多种疾病有关 (7,8)。MFN2 在许多癌症中起着肿瘤抑制因子的作用,包括宫颈癌、肝细胞癌、胰腺癌、乳腺癌、胃癌和膀胱癌 (9-11)。然而,据我们所知,MFN2 与结肠癌之间的潜在关系尚未得到充分研究。
在全球范围内,回收了不到0.5%的后消费者纺织废物,大多数焚化或最终被填埋在垃圾填埋场中。大多数后消费者纺织品是混合纤维,使机械回收复杂化,这是由于物质混合物和污染物而引起的。在这里,我们使用微波辅助糖酵解在ZnO催化剂上,然后进行溶剂溶解,证明了后消费者混合纺织废物的化学转化。这种方法使工艺热充电,同时使聚酯和氨纶在15分钟内快速地分离到其单体。简单的溶剂溶解可以使棉和尼龙的分离。我们通过广泛的材料表征评估所有组件的质量,讨论其可持续回收的潜力,并对该过程的经济可行性提供技术经济分析。
褪黑激素(N-乙酰基-5-甲氧基氨胺)吲哚胺会发挥多割作用,并调节与昼夜节律,免疫调节和季节性繁殖有关的许多细胞途径和分子靶标,包括T细胞恶性期间的代谢复活。t细胞恶性肿瘤包含一组血液癌,其特征是恶性T细胞的生长和增殖。这些癌细胞表现出独特的代谢适应性,这是癌症的标志,因为它们可以重新连接其代谢途径,以满足恶性肿瘤所必需的能量需求和生物合成的增强,这是Warburg效应,其特征在于朝着糖酵解的转变,即使氧气也可以使用。此外,T细胞恶性肿瘤通过抑制丙酮酸酶脱氢酶激酶(PDK)而导致代谢转移,从而导致乙酰基COA酶产生和细胞糖酵解活性增加。此外,褪黑激素在负责营养摄取和代谢重新布线的必需转运蛋白(GLUT1,GLUT2)的表达中起调节作用,例如T细胞中的葡萄糖和氨基酸转运蛋白。这种调节显着影响T细胞的代谢性,因此影响了它们的分化。此外,已经发现褪黑激素调节参与T细胞激活的临界信号分子的表达,例如CD38和CD69。这些分子是T细胞粘附,信号传导和激活不可或缺的。本综述旨在提供有关褪黑激素抗癌特性机制,涉及在T细胞恶性肿瘤期间代谢的机理。本综述涵盖了致癌因子的参与,肿瘤微环境和代谢改变,标志,代谢重编程以及褪黑激素对各种癌细胞的抗核/癌症影响。
引言前列腺癌 (PCa) 是 112 个国家/地区中男性最常见的癌症 (1)。这种疾病高度依赖于雄激素受体 (AR),这是一种转录因子,可调节 PCa 细胞生长和存活所必需的几种生物途径。值得注意的是,AR 调节癌细胞代谢以合成能量,例如促进糖酵解、线粒体呼吸和脂肪酸 β 氧化,以及诱导癌细胞增殖 (2-5)。PCa 细胞对 AR 活性的这种依赖性是治疗 PCa 的激素疗法要么通过雄激素剥夺疗法 (ADT) 靶向这些激素的产生,要么使用抗雄激素靶向 AR 信号通路 (2, 5) 的原因。肿瘤细胞最初对这些治疗反应良好,但
评论文章 基于二氯乙酸的代谢癌症治疗的 15 年演变:带有病例报告的回顾 *Akbar Khan MD, IMD, DHS, FAAO 4576 Yonge St., Suite 301, Toronto, ON, Canada, M2N 6N4 电子邮件:akhan@medicorcancer.com(通讯作者)Mitchell Ghen,DO,PhD 1515 South Federal Hwy, Suite 215, Boca Raton, Florida, USA, 33432 电子邮件:drmitchghen@gmail.com 目标 • 介绍和回顾癌症的代谢理论(历史和背景) • 解释代谢理论在癌症治疗中的应用 • 介绍代谢多靶点癌症治疗方法的概念 • 使用病例报告说明多靶点癌症治疗方法的临床可行性 摘要 尽管 Otto Warburg 发现了有氧糖酵解20 世纪 20 年代,癌细胞中发现了针对癌细胞代谢的治疗方法,但开发针对癌细胞代谢的疗法的潜力基本上被忽视了,直到 2007 年,一组加拿大研究人员发表了一篇开创性的论文。Bonnet 等人(他们自相矛盾地并非肿瘤学专家)发现仿制药二氯乙酸钠(“DCA”)可以在体外和体内逆转癌细胞中的 Warburg 表型,导致大鼠癌细胞自然自杀和肿瘤缩小。这种现象以前被认为是不可能的,因为人们认为恶性细胞中的线粒体发生了永久性改变,无法触发细胞凋亡。尽管 DCA 作为癌症疗法的大型临床试验从未完成,但北美和欧洲的少数医生通过独立的观察性研究和创造性思维迅速将这一新知识转化为临床癌症治疗方案。由于大多数司法管辖区允许标外用药,因此临床医生最初开始对所有常规疗法均无效的患者使用 DCA。多年来,人们发现了 DCA 的更多新抗癌机制,例如血管生成抑制、免疫激活和癌症干细胞靶向。2011 年左右,Seyfried (美国) 的工作开始阐明谷氨酰胺抑制的重要性,并提出多能量靶向方法优于单独的糖酵解抑制。作者们结合 Seyfried 的概念,共同努力创建了一种名为“MOMENTUM”的新代谢协议(代谢的、肿瘤学的、多能量靶向的、通用的、改良的)。在该协议中,通过静脉注射多种天然和药理药剂,同时靶向葡萄糖和谷氨酰胺代谢。几例疑难癌症病例的初步临床结果令人惊讶,证实了代谢多靶向方法非常有前景,比代谢单一疗法更前景广阔。这种癌症治疗方法几乎不会产生危及生命的副作用,而且治疗费用是可以承受的。令人失望的是,大型临床试验缺乏行业资金支持,但这并没有阻碍代谢方法作为临床可行方法的发展,这证明了纯粹的医学科学可以征服数十亿美元的经济回报。关键词:二氯乙酸;癌症;糖酵解;瓦尔堡;谷氨酰胺;线粒体;代谢;细胞凋亡
癌细胞非常多样化,但主要具有共同的代谢特性:即使有氧气可用,它们也具有强烈的糖酵解。在此,癌细胞的代谢异常被解释为氧化还原反应中电流的修饰。电子传输链中的较低电流,减少辅助因子的浓度增加,而三羧酸周期的部分逆转是几种形式的癌症的物理特征。代谢网络的氧化分支和还原分支之间存在电短路,这争取了纳米尺度上癌症的电子方法。电子流的这些变化通过琥珀酸酯的产生和将电子从氧转移到生物合成途径,引起伪催眠症和Warburg效应。这种对癌症的新外观可能具有潜在的thera peutic应用。
病原体具有众所周知的因素,这是由于短期和大量人群而迅速发展的。然而,病原体很少有注意所涉及的压力和局部压力的脆弱性。这里介绍的是免疫学方面的许多新范式,尤其是免疫代谢,这些范式来自研究如何利用宿主利用病原体脆弱性的压力。普遍的增殖需要资源和综合,这些资源和综合分别容易受到资源限制压力和破坏性/有害压力的影响。病原体在最威胁时特别容易受到压力的影响 - 当它们激增时。由于免疫细胞积极控制病原体(效应细胞)通常不会在感染部位增殖,因此存在“应力脆弱性差距”,其中增殖的病原体比任何类型的压力更容易受到攻击效应细胞。通过限制资源(资源限制压力)并在此处的基本防御中产生有害废物产品(损害/破坏性压力),主持人会积极强调脆弱的增殖病原体,并产生有害的废物产品(损害/破坏性压力),称为“免疫应激”。虽然营养免疫强调否认病原体微量营养素,但免疫压力扩展了概念,以限制所有资源,尤其是葡萄糖和氧气,再加上有害代谢产物,例如乳酸,活性氧(ROVIADIVE)(ROS)(ROS),并加热以进一步损害病原体或致病性病原体。相比之下,免疫压力强调了免疫系统如何使用营养和代谢来控制感染。目前,免疫代谢的大部分领域都集中于营养和代谢如何调节免疫功能,这是一种通过有氧糖酵解(乳酸/乳酸的产生大量)通过效应的免疫细胞对葡萄糖的效率低下。免疫压力解决了感染部位的效应细胞糖酵解,通过指出与乳酸高输出相关的葡萄糖的高摄取是靶向增殖病原体的理想的双臂胁迫。一旦认识到病原体增殖的基本脆弱性,挑战了许多其他免疫代谢的范式和整个免疫学的范围。