背景:由19日大流行的驱动和可怕的发现抗病毒药,我们探索了SARS-COV-2生物医学出版物的景观,以识别潜在的治疗方法。目的:这项研究的目的是鉴定出可能对冠状病毒病大流行有益的标签药物,它提出了一种称为Covidx的新型排名算法,以建议现有的药物潜在的重新利用,并在临床试验中使用药物知识验证基于文献的基于文献的结果。方法:为了实现此类目标,我们应用了自然语言处理技术来识别药物和链接实体(例如疾病,疾病,基因,蛋白质,化合物)。当链接此类实体时,它们会形成一张可以使用网络科学工具进一步探索的地图。Covidx算法是基于我们称为“多样性”的概念。通过测量如何使用各种生物实体计算“多样化”药物的多样性评分(无论每个类别中实际实例的基础性如何)。该算法验证排名并授予目前正在开放临床试验中正在研究的药物。开放临床试验的基本原理是提供PubMed结果的验证机制。这确保提供了这种疾病快速发展的最新证据。结果:从分析的生物医学文献中,该算法确定了30种可能的候选药物进行重新利用,相应地对其进行排名,并根据临床试验的证据验证了排名结果。根据我们的算法,前10名候选者是羟氯喹,阿奇霉素,氯喹,氯喹,利托那韦,洛萨拉坦,losartan,remdesivir,favipipiviravir,favipiviravir,甲基丙糖酸酯,雷帕霉素,tilorone dilorone dilorone dilorone dihydrochloride。结论:排名在识别可以重新使用的药物方面表现出一致性和有望。但是,我们认为,完整的治疗方法是一种多方面的辅助方法,可能需要同时服用多种药物。
doi:https://doi.org/10.22271/j.ento.2023.v11.i6a.9261抽象的植物植物 - 寄生虫线虫是全球12.3%(1570亿美元)的收益率损失最高的原因,全球和21.3%(158亿美元)(158亿美元)。合成nematicides对环境和公共卫生的不利影响促使对管理线虫的非化学方法进行了重新评估。一种这样的方法是生物耗尽,其中,新鲜的植物生物量被掺入土壤中,并用聚乙烯覆盖了两到三周,以抑制土壤传播的害虫和病原体。生物植物的机制是由于葡萄糖酸盐水的水解释放,葡萄糖酸的水解释放,葡萄糖醇的水解属于铜绿,漫画科和卡帕拉辛的植物中。非包质植物的挥发性线虫拮抗化合物的产生扩大了生物量的范围。这些化合物抑制线虫运动,削弱宿主的发现能力,也可能引起卵巢效应。生物肿瘤可有效控制真菌病原体和杂草,改善土壤特性并增强有益的土壤微生物。然而,该方法有一些局限性,例如淡淡的植物生物量在干燥的土壤和较深层的土壤中不可用。在存在生物剂量的情况下,也可以减少有益的昆虫致病线虫。但是,该技术可以成本效率地包括在综合线虫管理中,以获得可接受的线虫管理水平。由于非特异性疾病症状,它们也被称为植物的“看不见的敌人”,并且经常被忽视。关键词:铜氨基科,植物 - 寄生虫线虫,异硫氰酸盐和葡萄糖素酸盐引入植物寄生虫或PPN,是小的显微镜round虫,主要形成与宿主的强制性寄生虫键。由于PPN更适合各种农业气候区域,因此它们在所有种植系统中都是高度多样化和无处不在的。每年,园艺作物的损失百分比约为21.3%,估计为102,0.3979亿卢比(15.8亿美元);估计有198万卢比的50,2224.98亿卢比,估计有198.98亿卢比的198万卢比,造成了十九种园艺作物(香蕉,柑橘,葡萄,瓜瓦,木瓜,木瓜,石榴,苦瓜,胡萝卜,辣椒,辣椒,辣椒,番茄,番茄,番茄,奶油,番茄和土豆)的损失。,如果是十种田间作物(玉米,大米,鹰嘴豆,蓖麻,小麦,黑克,绿色克,葵花籽,黄麻和花生),则为卢比。51,8181万(Kumar等,2020)[17]。 政府法规由于对环境的有害影响而逐渐消除了合成化学物质的使用(Warnock等,2017)[34]。 由于各个国家 /地区的州和中央层面的繁琐注册标准,通过熏蒸或非肿胀方法的线虫管理正在不断变化。 因此,有效管理对于确保作物生产和最大收益至关重要。 使用对植物寄生线虫对植物寄生线虫的生物摄影剂就是这样的策略。 在17世纪初,观察到葡萄糖醇(GSL)和异硫氰酸酯(ITC)的独特性能。 GSL和ITC是生物量度中的关键活性化合物。51,8181万(Kumar等,2020)[17]。政府法规由于对环境的有害影响而逐渐消除了合成化学物质的使用(Warnock等,2017)[34]。由于各个国家 /地区的州和中央层面的繁琐注册标准,通过熏蒸或非肿胀方法的线虫管理正在不断变化。因此,有效管理对于确保作物生产和最大收益至关重要。使用对植物寄生线虫对植物寄生线虫的生物摄影剂就是这样的策略。在17世纪初,观察到葡萄糖醇(GSL)和异硫氰酸酯(ITC)的独特性能。GSL和ITC是生物量度中的关键活性化合物。GSL和ITC是生物量度中的关键活性化合物。生物耗尽生物量的历史是将新鲜植物生物量纳入土壤的过程,该过程通过释放几种化学物质来破坏土壤传播的病原体和害虫(Kirkegaard等,1993)[15]。有机物生物降解期间释放的挥发性化合物的熏蒸作用抑制了植物病原体(Buena等,2007)[6]。
摘要背景:琥珀酸具有巨大的潜力,可以成为基于生物的新基础,用于推导工业中多种增值化学品。基于可再生生物量的琥珀酸生产可以提供一种可行的方法来部分减轻全球制造对石油炼油厂的依赖性。为了改善生物过程的经济学,我们试图通过真菌细胞平台探索可能的解决方案。在这项研究中,尼日尔(Aspergillus Niger)是一种著名的生物基有机酸工业生产生物,因其琥珀酸产生的潜力而被利用。结果:使用核糖核蛋白(RNP)的CRISPR – CAS9系统,连续的遗传操作是在产生柠檬酸菌株的工程中实现的。两种涉及两种副产品的基因,即葡萄糖酸和草酸,被破坏。此外,有效的C 4-二羧酸盐转运蛋白和可溶性NADH依赖性富马酸酸盐还原酶被过表达。所得的菌株SAP-3产生了17 g/l琥珀酸,而使用合成底物在野生型菌株中未检测到可测量水平的琥珀酸。此外,还研究了两个培养参数,温度和pH值,以实现其对成功的粉刺产生的影响。3天后在35°C下获得最高量的琥珀酸,低培养pH值对琥珀酸的产生具有抑制作用。探索了两种类型的可再生生物量作为琥珀酸产生的底物。6天后,SAP-3菌株能够分别从甜菜糖蜜和小麦水解物中产生23 g/L和9 g/l琥珀酸。结论:在这项研究中,我们成功地将基于RNP的CRISPR-CAS9系统应用于尼日尔的基因工程中,并显着改善了工程菌株中的琥珀酸产生。关于栽培参数的研究揭示了pH和温度对琥珀酸产生的影响以及未来在菌株发展中的挑战。使用可再生生物量使用糖浆和小麦稻草水解产物来证明了可再生生物量来生产琥珀酸。关键字:尼日尔曲霉,代谢工程,琥珀酸生产,CRISPR – CAS9系统
摘要背景:琥珀酸具有巨大的潜力,可以成为基于生物的新基础,用于推导工业中多种增值化学品。基于可再生生物量的琥珀酸生产可以提供一种可行的方法来部分减轻全球制造对石油炼油厂的依赖性。为了改善生物过程的经济学,我们试图通过真菌细胞平台探索可能的解决方案。在这项研究中,尼日尔(Aspergillus Niger)是一种著名的生物基有机酸工业生产生物,因其琥珀酸产生的潜力而被利用。结果:使用核糖核蛋白(RNP)的CRISPR – CAS9系统,连续的遗传操作是在产生柠檬酸菌株的工程中实现的。两种涉及两种副产品的基因,即葡萄糖酸和草酸,被破坏。此外,有效的C 4-二羧酸盐转运蛋白和可溶性NADH依赖性富马酸酸盐还原酶被过表达。所得的菌株SAP-3产生了17 g/l琥珀酸,而使用合成底物在野生型菌株中未检测到可测量水平的琥珀酸。此外,还研究了两个培养参数,温度和pH值,以实现其对成功的粉刺产生的影响。3天后在35°C下获得最高量的琥珀酸,低培养pH值对琥珀酸的产生具有抑制作用。探索了两种类型的可再生生物量作为琥珀酸产生的底物。6天后,SAP-3菌株能够分别从甜菜糖蜜和小麦水解物中产生23 g/L和9 g/l琥珀酸。结论:在这项研究中,我们成功地将基于RNP的CRISPR-CAS9系统应用于尼日尔的基因工程中,并显着改善了工程菌株中的琥珀酸产生。关于栽培参数的研究揭示了pH和温度对琥珀酸产生的影响以及未来在菌株发展中的挑战。使用可再生生物量使用糖浆和小麦稻草水解产物来证明了可再生生物量来生产琥珀酸。关键字:尼日尔曲霉,代谢工程,琥珀酸生产,CRISPR – CAS9系统
伤口愈合过程经历了复杂的机制,需要很长时间。基于经验经验,比纳洪离开(Anredera cordifolia(十)steenis)治愈新鲜的伤口。这项研究旨在确定Binahong提取物作为通过硅和体外测试中伤口愈合的活性成分的潜力。使用具有多种不同溶剂的超声化方法提取叶子:乙酸乙酯 - 乙醇和乙醇水性比例确定。基于UHPLC-HRMS分析,96%乙醇提取物鉴定出187种化合物,70%乙醇提取物153种化合物,50%乙醇提取物105种化合物和乙酸乙酸乙酯提取物110化合物。在计算机研究中表明,具有MMP1的反式3-吲哚丙烯酸化合物的结合能为-8.0 kcal/mol,而MMP1天然配体产生-9.5 kcal/mol。使用MMP12的葡萄糖酸化合物产生-4.3 kcal/mol的结合能,而对于天然配体,MMP12产生-3.4 kcal/mol。两种化合物均在Anredera Cordifolia(十)steenis提取物,具有70%的乙醇溶剂。使用MTT方法使用超过24、48和72小时的纤维爆炸细胞增殖测定法进行了体外测定。在24小时孵育期间以70%乙醇提取的提取物显着增加了细胞增殖,但在48小时和72小时的孵育期间,它往往稳定。Anredera Cordifolia的70%乙醇(十) 与其他溶剂提取物相比,在8μg/mL –200μg/ml浓度下以8μg/ml –200μg/ml的浓度以显着增加细胞增殖。Anredera Cordifolia的70%乙醇(十)与其他溶剂提取物相比,在8μg/mL –200μg/ml浓度下以8μg/ml –200μg/ml的浓度以显着增加细胞增殖。这些结果表明Anredera Cordifolia的70%乙醇提取物(十)Steenis具有加速增殖过程的最佳活动,这可能是修复伤口的第一步。这项研究表明,Anredera Cordifolia的70%乙醇(十)Steenis作为伤口治疗剂有效。
以来已经过去了很长时间以来,TheDore Escherich(1857-1911)和Ernst Moro(1874-1951)在婴儿菌群的comportion上进行了很长时间。如今,一个多世纪后,我们仍在研究婴儿菌群的重要性,并试图揭示所谓的“芽孢杆菌”的特殊利益,如今,如今已被称为双杆菌。在过去的二十年中,下一代测序技术的增殖和成本效益不断增加,从婴儿到衰老到衰老,及其与一般健康的关系,对沿着人类寿命的菌群的组成和功能有前所未有的了解。几项研究强调了微生物群在早期生命阶段的重要意义对于宿主体内平衡的发展和后来的个人健康。在这种情况下,健康母乳喂养婴儿的肠道微生物群中的主要微生物属被认为是至关重要的。这些是当前研究兴趣的各个方面,因为我们最终开始了解微生物 - 霍斯特相互作用的全部复杂性。但是,我们对微生物特征的了解以及影响特定细菌种群发展的因素,例如乳酸杆菌和双杆菌,仍然有限。此特刊考虑与该主题相关的不同方面。此外,作者提出了一些在这种情况下,这种特殊的IS-Sue题为“婴儿中的肠道菌群:专注于双杆菌”涵盖了该研究领域的不同方面,包括包括体外和体内数据的原始研究文章,以及综述,以及综述了对多杆菌对婴儿健康的重要性。在其体外,研究Harata和合作者[1]评估了包括双杆菌双杆菌在内的不同物种对人肠道粘液的粘附能力。作者观察到了年龄的依赖性,有些菌株表现出对成年粘液的依从性,而其他菌株(例如B. bifumum)粘附得更好地粘附在婴儿的粘蛋白上。体外测试还用于筛选和选择对病原体金黄色葡萄球菌的活性合成生组合,这强调了将果糖与Bi fifum结合的兴趣[2]。已经反复报道了某些双杆菌菌株对发酵果糖酸和菊粉发酵的能力,这使得这些细菌成为开发合成产物的有趣方法。然而,在这种共生产物中包括其他微生物(例如乳杆菌)也有兴趣。在这方面,在他们的文章中,Renye及其同事[3]筛选了86种乳酸杆菌菌株在菊粉和果蝇中生长的能力,从而鉴定了适合开发此类产品的菌株。表型和基因型检测,以解读Bi Fibacterium longum longum Supp中的多样性。继续研究肠道中可能发生的微生物相互作用,在结肠模拟系统中获得的数据,含有双杆菌的双杆菌和熟食芽孢杆菌,由evdokimova和Contoramers [4]使用[4]用于对这些相互作用进行建模,从而对这些微生物的预测进行建模。婴儿分类群,强调了人乳寡糖(HMO)和抗体耐药性模式的现有差异。
QUANTITATIVE ANALYSIS OF PHARMACEUTICAL EMERGING CONTAMINANTS IN WATER AND FISH SAMPLES OF RIVER KADUNA 1*Hafsat Tukur Rumah , 2Rilwan Hadiza Bello , 3Hauwa'u Yakubu Bako , 1Abdullahi Maikudi Nuhu 1 Department of Pure and Applied Chemistry, Kaduna State University, Kaduna 2 Department of Human Anatomy, Kaduna State Kaduna大学3年,卡杜纳州立大学的生物化学系 *通讯作者电子邮件地址:rumahhafsat@kasu.edu.ng摘要摘要在自然水域中存在药品的新兴污染物(PEC)在全球范围内吸引了许多科学家的注意力。在过去的几十年中,有关这些污染物在不同供水系统中的存在的报告持续增加。这引起了人们担心它们对生物多样性和人类的潜在负面影响以及由于生物转化的能力而在很长一段时间内积累的潜在负面影响,因此将其分解成比药物本身更具生物活性的代谢产物。此外,它们可能会在小剂量下在人类中产生生理影响。这项研究涉及对卡杜纳大都会内药剂师过期药物的处置实践的初步研究。收集了卡杜纳河的水和鱼类样品,并准备用于GC-MS分析以检测PEC的存在。对卡杜纳大都会(Kaduna Metropolis)药剂师过期药物的处置习惯的初步调查表明,大约60%的药剂师通过在垃圾箱中倾倒或燃烧来丢弃过期的产品;据报道,有20%的人遵循国家(NAFDAC)指南,而约有20%的人拒绝回应或不知道处置做法。水样获得的GC-MS结果表明,存在N-(3-甲基丁基)乙酰胺(335 g/L),乙酸(81 g/L)和环戊烷二烷酸(140 g/L)。在鱼类样品中,26-nor-5-cholesten-3-beta.-ol-25-One(400 g/kg),1,3-苯苯二二醇(160 g/kg),环戊烷二甲酸(170 g/kg)以及N-(3-甲基丁基)乙酰氨基酰基(40 g/kg)。在水样中发现的某些化合物是邻丙酸(27 g/l),鸟嘌呤(27 g/l),葡萄糖酸(17 g/L)和乙酸银(0.7 g/L),而在鱼样品中,羟胺(3 g/kg),1,5 g/kg/kg/kg/kg/sil(3 g/kg)中(3 g/kg)和盐酸(3 g/kg)。检测到的大多数化合物是酯,酸和酒精化合物。对尼日利亚PEC的研究被忽略或限制,尤其是在该国北部,尽管它在不同的位置和不同的环境隔室进行了浓度变化。这项研究将提高意识,并使个人和利益相关者对这些污染物的潜在负面影响。药物化学物质非常广泛,包括溶剂,水,反应物等。它们是在不同的环境隔室中发现的。在水和鱼类样品中都发现了许多PEC。随着时间的流逝,这些污染物的积累可能对生命有害。
使用酵母作为模型系统来表征硝化应激反应,增加了证据的数量,这表明反应性氮物种(RNSS)和一氧化氮(NO)本身会影响细胞的氧化还原状态,例如氧化应激和修饰细胞蛋白,可逆地或不可逆地修饰细胞蛋白。酵母是研究细胞中反应性氮种的作用的出色模型系统。目前,我们正在研究BZIP转录因子ATF1和PCR1在硝化应激中的作用。研究亚硝化应激对酿酒酵母的线粒体呼吸链超复合物的影响表征NO和RNS对细胞死亡机制的影响NO和RNS对慢性骨髓骨髓性K562细胞系和MCF7细胞中的NO和RN对细胞死亡机制的作用。分泌植物学真菌巨摩托菌的分类分析在固态培养中生长。,我们开发了一种生物处理方法,用于使用巨型球虫中的固体发酵生产内糖酸酶和木烷酶。研究弧菌霍乱中的硝化应力反应机制。9。研究指南:注册博士学位主管,部门加尔各答大学生物化学,2001年3月。授予博士学位的研究人员人数学位:追求M.Phil./博士学位的十八(18)个研究人员人数:第四(4)届:1)Chirandeep Dey,B.Sc。&M.Sc.在动物学中,UGC-NET SRF 2)Ayantika Sengupta,学士学位&M.Sc.在动物学中,CSIR-NET SRF 3)SANCHITA BISWAS,B.SC。动物学和硕士在生物化学中,CSIR-NET SRF 4)SHUDDHASATTWA SAMADDAR,B.SC。微生物学和硕士学位 在生物化学中,DBT-SRF 5)Sourav Mukherjee,硕士 生物技术,项目实习生前博士学生:1)Rajib Sengupta博士,学士学位 化学硕士 生物化学博士学位在2007年颁发的奖学博士研究生授予,在匹兹堡大学外科Detcho A. Stoyanovsky教授的监督下,匹兹堡大学后研究员,在Karolinska Institutet的Karolinska Institutet的Biiochemist和Biophysics教授Arne Holmgren教授的监督下微生物学和硕士学位在生物化学中,DBT-SRF 5)Sourav Mukherjee,硕士生物技术,项目实习生前博士学生:1)Rajib Sengupta博士,学士学位 化学硕士 生物化学博士学位在2007年颁发的奖学博士研究生授予,在匹兹堡大学外科Detcho A. Stoyanovsky教授的监督下,匹兹堡大学后研究员,在Karolinska Institutet的Karolinska Institutet的Biiochemist和Biophysics教授Arne Holmgren教授的监督下生物技术,项目实习生前博士学生:1)Rajib Sengupta博士,学士学位化学硕士 生物化学博士学位在2007年颁发的奖学博士研究生授予,在匹兹堡大学外科Detcho A. Stoyanovsky教授的监督下,匹兹堡大学后研究员,在Karolinska Institutet的Karolinska Institutet的Biiochemist和Biophysics教授Arne Holmgren教授的监督下化学硕士生物化学博士学位在2007年颁发的奖学博士研究生授予,在匹兹堡大学外科Detcho A. Stoyanovsky教授的监督下,匹兹堡大学后研究员,在Karolinska Institutet的Karolinska Institutet的Biiochemist和Biophysics教授Arne Holmgren教授的监督下
生物等效性临床试验涉及健康的志愿者,其血液检查必须在正常范围内,这对于胆红素和肝酶非常严格。吉尔伯特的综合征(GS)是与胆红素在肝脏中的代谢有关的良性遗传疾病(Düzenli等,2021)。胆红素是血红素分解代谢的最后产物,主要来自网状内皮系统中红细胞血红蛋白的崩溃(Memon等,2016)。胆红素消除是通过与葡萄糖酸结合将其转化为直接胆红素的(Gil andSąSiadek,2012)。由于GS患者的葡萄糖醛酸化水平降低,而未偶联的胆红素并非像共轭胆红素那样水溶性,因此不能将其排泄在胆汁中,患者患有未偶联的高胆汁纤维血症和轻度的高度脱节性高度,thoguluva chandrasekar et al al al al al al and and chandymirirubinia and。在健康的人中,胆红素的正常水平范围为0.1至1.2 mg/dl。但是,GS患者的水平通常为1.2至5.3 mg/dl(Gil andSąSiadek,2012年)。因此,由于怀疑任何肝病,胆红素水平升高的GS患者被排除在生物等效性研究之外,即使这种变化在临床上是微不足道的,并且众所周知,该综合征患者的肝酶没有改变(Moreno等人,1984; 1984; sidiib; sidorenko and teirenko and t.222222222) 2023)。这种变化称为等位基因UGT1A1 *28(RS3064744),以前被注释为RS34815109或RS34983651(Aronica等,2022)。gs患者在基因中具有变体,用于将未偶联的胆红素转化为共轭胆红素,尿苷二磷酸葡萄糖醛酸葡萄糖葡萄糖基转糖基转移酶1A1(Thogululuva chandrasekar等)。更具体地,它与该基因的启动子的短串联重复(Str)变化有关,该启动子包括将二核苷酸序列(TA)添加到转录启动序列A(TA)7 TAA中,将其转换为(TA)8 TAA(Horsfall等,2011; Thoguluva; Thoguluva Chandrasekar et a(Horsfall et al taa taa)。因此,具有这种变体使酶仅具有正常活性的30%。此外,当添加一个二核苷酸序列(A(TA)6 TAA)或UGT1A1*37时,当基因组中的该位置定义了其他等位基因,例如UGT1A1*36(a(ta)9 TAA)。UGT1A1*36的转录水平似乎高于UGT1A1*1,而UGT1A1*37似乎具有较低的水平(Gammal等,2016)。这些变体不太常见或可能取决于祖先的地理区域(Gammal等,2016)。并非每个具有等位基因UGT1A1 *28的人最终都会出现明显的症状,因为它取决于环境因素,例如身体压力,延长禁食,饮食不良,溶血反应,发热疾病和月经(Düzenli等,2021年)。UGT1A1 RS887829 C> t变体(UGT1A1 *80)因与UGT1A1 *28有可能的关系而进行了研究。已被描述为与UGT1A1*28的几乎完全连锁不平衡(R 2例如,在48小时内,降低热量摄取至400 kcal日记会增加胆红素浓度2至3倍。 GS通常出现在青春期早期,并且在男性中更频繁地诊断出,由于性类固醇浓度差异和雄性胆红素的产生较高而引起的女性(Thoguluva Chandrasekar等,2022年)。
季节性的p-葡萄糖酸和抗菌活性的季节性变化。Pharm Biol 46:889-893。Karamat,F,Olry,A,Munakata,R等。 (2014)香豆素 - 特定的pren- yltransferase催化了欧洲裔弗拉诺科·马林形成的关键生物合成反应。 工厂J 77:627-638。 Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。 分子24:796。 li,H,Ban,Z,Qin,H等。 (2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。 植物生理学167:650-659。 Luo,X,Reiter,MA,D'Espaux,L等。 (2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。 自然567:123-126。 luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。 Proc Natl Acad Sci USA 116:10749-10756。 MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Karamat,F,Olry,A,Munakata,R等。(2014)香豆素 - 特定的pren- yltransferase催化了欧洲裔弗拉诺科·马林形成的关键生物合成反应。工厂J 77:627-638。Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。 分子24:796。 li,H,Ban,Z,Qin,H等。 (2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。 植物生理学167:650-659。 Luo,X,Reiter,MA,D'Espaux,L等。 (2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。 自然567:123-126。 luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。 Proc Natl Acad Sci USA 116:10749-10756。 MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。分子24:796。li,H,Ban,Z,Qin,H等。(2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。植物生理学167:650-659。Luo,X,Reiter,MA,D'Espaux,L等。(2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。自然567:123-126。luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。Proc Natl Acad Sci USA 116:10749-10756。MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。MA,J,GU,Y,Marsafari,M等。(2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。J Ind Microbiol Biotechnol 47:845-862。mori,T,(2020)芳族前转移酶的酶学研究。J Nat Med 74:501-512。Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Munakata,R,Inoue,T,Koeduka,T等。(2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。植物生理学166:80-90。社区生物2:384。Munakata,R,Olry,A,Takemura,T等。 (2021)UBIA超家族蛋白的平行演化为植物中的芳族O-前转移酶。 Proc Natl Acad Sci USA 118:E2022294118。 Munakata,R,Takemura,T,Tatsumi,K等。 (2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。 村上,A,Kuki,W,Takahashi,Y等。 (1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。 JPN J Cancer Res 88:443-452。 Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Munakata,R,Olry,A,Takemura,T等。(2021)UBIA超家族蛋白的平行演化为植物中的芳族O-前转移酶。Proc Natl Acad Sci USA 118:E2022294118。Munakata,R,Takemura,T,Tatsumi,K等。 (2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。 村上,A,Kuki,W,Takahashi,Y等。 (1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。 JPN J Cancer Res 88:443-452。 Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Munakata,R,Takemura,T,Tatsumi,K等。(2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。村上,A,Kuki,W,Takahashi,Y等。(1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。JPN J Cancer Res 88:443-452。Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Nishikawa,S,Aoyama,H,Kamiya,M等。(2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -