该项目之所以取得成功,得益于 SINTEF 能源系统部高级研究员 Kjell Sand 博士的不断建议和指导。在这方面,我要衷心感谢他在我的工作中抽出时间和不断鼓励。他的智慧和幽默话语将永远铭记在我心中。
需要开发 OMS/MP(作战模式概要/任务概况),为用户提供 RAM 分析目标和 ROC 分析基础数据。但是,由于作战环境和编写指导导致数据采集量不足,导致以用户为导向的产品开发和可靠的武器系统采购无法满足要求。如图 1 所示,MAA(任务区域分析)的用户 OMS/MP 已通知 ILS 办公室。它作为计算 RAM 目标的数据提供。然后,将计算出的目标应用于武器系统设计和 ILS 开发。用户需要在军事力量需求请求的 ILS 因素中包含操作可用性目标,并考虑任何类似武器系统的操作可用性。但是,由于背景数据不足,开发人员在分析需求时,大多数基于 OMS/MP 的操作可用性目标的确定并不应用于设计标准中。在这方面,本文描述了武器系统可靠性分析的一个基本过程。提出了一种基于可靠性分析模型(RELEX)的改进可靠性分析流程。通过在武器系统中的应用,证明了该流程的合理性。
ml 61 (24) 2.86 (1.125, Hz2 5, (,0, 1.91 (0.750) Ez3 41 [16) 1.91 (0.,50) X.4 36 (14) 0.95 (0.375) ml 61 (24) 1.27 (0.500) =2 56 (22) 1.27 [0.500, KB3 41 [161 1.27 (0.500, xl 100 (39.25) 4.76 ,1.B75) X2 100 (39.251 3.49 (1.375) X3 100 ,39.251 3.49 (1.375, Z4 100 ,39.25) 1.91 (0.,50, ,
系统可靠性分析必须基于精确定义的概念。由于人们很容易接受这样一个事实:在类似条件下运行的一组假定相同的系统会在不同的时间点发生故障,因此故障现象只能用概率术语来描述。因此,可靠性的基本定义必须依赖于概率论中的概念。本章介绍系统可靠性工程的概念。这些概念为量化系统的可靠性提供了基础。它们允许在系统之间进行精确比较或为改进故障率提供逻辑基础。各种示例强化了第 2.1 节中提出的定义。第 2.2 节研究了可靠性工程中有用的常见分布函数。讨论了几种分布模型,并推导出由此产生的危险函数。第 2.3 节描述了系统性的新概念。介绍了各种系统配置(例如串联、并联和 k-out-of-n)的几个系统性函数。第 2.4 节讨论了具有多种故障模式的系统的各个可靠性方面。第 2.5 和 2.6 节讨论了随机过程,包括马尔可夫过程、泊松过程、更新过程、准更新过程和非齐次泊松过程。
研讨会上发表了 11 篇论文,包括两篇开场演讲,探讨了广泛的问题,包括: • 当前方法安全评估 • 当前人类绩效模型的局限性 • 认知可靠性分析技术 • 功能障碍及其对人员可靠性的影响 • 定量与定性分析方法 • 高可靠性组织的特征 • 企业安全文化的差异 • 情境建模技术 因果建模 • 人员可靠性建模中的成本效益分析技术 •因果数据库领域的发展 • 基于分层分类法的人为错误预测方法的应用
可靠性已成为新工艺技术中系统设计的重大挑战。更高的集成度会显著增加功率密度,从而导致更高的温度和对可靠性的不利影响。在本文中,我们介绍了一种模拟方法来分析多核 SoC 的可靠性。所提出的模拟器是第一个提供片上系统级细粒度可靠性分析的模拟器。我们使用我们的模拟方法来研究设计选择(例如热封装和布局)以及运行时事件(例如电源管理策略和工作负载分布)对可靠性的影响。类别和主题描述符:B.8.0 [性能和可靠性]:一般;C.4 [系统性能]:建模技术。一般术语:可靠性、测量。关键词:MP-SoC 可靠性、可靠性模拟、可靠性建模。