在整个 CSO 规划过程中,制定完善的监测和建模计划至关重要,该计划涵盖收集有用的监测数据以进行系统特性描述、评估和选择控制替代方案以及施工后合规性监测。必要的监测工作将取决于许多因素:收集系统的布局;现有历史数据的数量、质量和可变性以及必要的额外数据;是否进行建模,如果进行建模,所选模型的复杂性;以及可用预算。监测计划应涵盖足够的暴风雨事件,以使许可证持有者能够充分了解 CSO 的污染物负荷,包括污染物浓度的平均值和变化以及对受纳水质的影响。
摘要 本文探讨现代民航业中的可靠性工程以及相关的工程活动和方法。可靠性是广义的,指与之相关的其他系统特性,如可用性、可维护性、安全性和耐久性。可靠性涵盖了设备的整个生命周期,包括可靠性需求识别、可靠性分析与设计、可靠性需求的验证与确认(通常涉及设备设计和开发阶段)、质量保证(通常进入制造阶段)以及故障诊断与预测和维护(与运行阶段相关)。本文给出了民航业可靠性工程实践中的经验教训,可供可靠性管理人员和工程师参考,也可供其他对可靠性要求较高的行业参考。© 2018 中国航空航天学会。由 Elsevier Ltd. 制作和托管。本文为 CC BY-NC-ND 许可下的开放获取文章( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
摘要 我们考虑现代民用航空工业中的可靠性工程以及相关的工程活动和方法。我们从广义上考虑可靠性,指与之相关的其他系统特性,如可用性、可维护性、安全性和耐久性。我们涵盖了设备的整个生命周期,包括可靠性需求识别、可靠性分析与设计、可靠性需求的验证和确认(通常涉及设备设计和开发阶段)、质量保证(通常进入制造阶段)以及故障诊断和预测以及维护(与运行阶段相关)。给出了民用航空工业可靠性工程实践中的经验教训,可供可靠性管理人员和工程师参考,也可供其他对可靠性要求较高的行业参考。� 2018 中国航空航天学会。由爱思唯尔有限公司制作和托管。这是一篇根据 CC BY-NC-ND 许可开放获取的文章( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
摘要 我们考虑现代民用航空工业中的可靠性工程以及相关的工程活动和方法。我们从广义上考虑可靠性,指与之相关的其他系统特性,如可用性、可维护性、安全性和耐久性。我们涵盖了设备的整个生命周期,包括可靠性需求识别、可靠性分析与设计、可靠性需求的验证和确认(通常涉及设备设计和开发阶段)、质量保证(通常进入制造阶段)以及故障诊断和预测以及维护(与运行阶段相关)。给出了民用航空工业可靠性工程实践中的经验教训,可供可靠性管理人员和工程师参考,也可供其他对可靠性要求较高的行业参考。� 2018 中国航空航天学会。由爱思唯尔有限公司制作和托管。这是一篇根据 CC BY-NC-ND 许可开放获取的文章( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
改善土壤结构并增加SOM是气候智能农业的关键目标,因为既倾向于增加浸润和排水,改善曝气,增强水和养分持有能力,并降低压实和侵蚀性损失的风险(Steenwerth等人。2014; Lal等。2018)。传统上,土壤和农业科学家将这种有机物的构建过程视为简单的碳等式,碳输出。SOM只能通过增加总碳输入来增加(即根,残基或有机修正案)或减少总损失(来自耕作,侵蚀等)。对SOM的更细微的理解强调了其保存是由土壤结构,微生物生理和土壤生物能够发挥作用的整体效率所决定的生态系统特性(Schmidt等人。2011)。土壤中的所有有机碳都是微生物分解的“公平游戏” - 仅通过与粘土和/或物理遮挡的络合而稳定
摘要 - 本文介绍了基于经济标准的PV阵列和风力涡轮机发生的大型和小规模压缩空气存储(CAE)的经济和实验研究。详细介绍了具有三个不同案例研究的两个不同的CAES系统。第一个型号包括涡轮,压缩机和存储储层量的风力涡轮机,压缩机和存储库,分别为220 MW,200 MW和150,000 M3。一个小的CAES功率系统由Bergey Excel-S 10 kW的5 kW隔离载荷组成,以调查提出的模型的有效性,以研究另一种应用。第二个介绍的模型基于PV面板提供的实际原型测试和实验室测量。一个原型模型的构建较小,以指示系统特性及其主要有效参数。此外,基于提议的原型系统的基础知识将对孤立的埃及村庄(halayeb)进行的案例研究作为第三个案例研究。结果证明了CAES系统提供网格隔离村庄的家庭负载的能力。最后,该论文对提出的系统进行了经济分析。
在50 kHz 8 w时为50 kHz 5 w时355 nm的平均功率为50 kHz 8 w,在50 kHz 10 w时为50 kHz脉冲能量20 µj,在50 kHz 100 µj下为50 kHz 160 µj,在50 kHz 200 kHz脉冲宽度为50 kHz脉冲宽度为50 kHz的速度为50 kHz 20 ns 20 ns 20±4 ns pulse at 50 kHz 160 µj kHz (option up to 300 kHz) Pulse-to-pulse stability 2 < 2% rms Long term power stability 3 < 2% rms Beam spatial mode TEM 00 M 2 < 1.1 Beam pointing stability < 20 µrad Beam divergence < 2.5 mrad Beam roundness ~90% Beam diameter, at exit ~0.3 mm ~0.4 mm Polarization ratio Horizontal; 100:1操作规格和系统特性接口RS232,以太网,软件GUI,外部TTL触发热身时间<待机时间<5分钟,距离冷启动电气需求100-240 V AC <10分钟;或15 V DC,13.4线频率50-60 Hz环境温度4环境10°C至30°C(50°F至86°F)的工作范围,在50 kHz 8 w时为50 kHz 5 w时355 nm的平均功率为50 kHz 8 w,在50 kHz 10 w时为50 kHz脉冲能量20 µj,在50 kHz 100 µj下为50 kHz 160 µj,在50 kHz 200 kHz脉冲宽度为50 kHz脉冲宽度为50 kHz的速度为50 kHz 20 ns 20 ns 20±4 ns pulse at 50 kHz 160 µj kHz (option up to 300 kHz) Pulse-to-pulse stability 2 < 2% rms Long term power stability 3 < 2% rms Beam spatial mode TEM 00 M 2 < 1.1 Beam pointing stability < 20 µrad Beam divergence < 2.5 mrad Beam roundness ~90% Beam diameter, at exit ~0.3 mm ~0.4 mm Polarization ratio Horizontal; 100:1操作规格和系统特性接口RS232,以太网,软件GUI,外部TTL触发热身时间<待机时间<5分钟,距离冷启动电气需求100-240 V AC <10分钟;或15 V DC,13.4线频率50-60 Hz环境温度4环境10°C至30°C(50°F至86°F)的工作范围,在50 kHz 8 w时为50 kHz 5 w时355 nm的平均功率为50 kHz 8 w,在50 kHz 10 w时为50 kHz脉冲能量20 µj,在50 kHz 100 µj下为50 kHz 160 µj,在50 kHz 200 kHz脉冲宽度为50 kHz脉冲宽度为50 kHz的速度为50 kHz 20 ns 20 ns 20±4 ns pulse at 50 kHz 160 µj kHz (option up to 300 kHz) Pulse-to-pulse stability 2 < 2% rms Long term power stability 3 < 2% rms Beam spatial mode TEM 00 M 2 < 1.1 Beam pointing stability < 20 µrad Beam divergence < 2.5 mrad Beam roundness ~90% Beam diameter, at exit ~0.3 mm ~0.4 mm Polarization ratio Horizontal; 100:1操作规格和系统特性接口RS232,以太网,软件GUI,外部TTL触发热身时间<待机时间<5分钟,距离冷启动电气需求100-240 V AC <10分钟;或15 V DC,13.4线频率50-60 Hz环境温度4环境10°C至30°C(50°F至86°F)的工作范围,
飞机系统性能通常可以定义为系统必须执行才能成功完成任务的武器系统任务。预期系统性能参数必须是武器系统设计过程不可或缺的一部分。考虑到用户的性能期望,设计师将就系统选择和设计参数做出决策。他必须选择安装在飞机上的系统类型、其操作模式、每个系统所需的分辨率以及允许机组人员使用系统以实现最佳战术效用所需的操作员界面。所有这些都有助于定制设计,使系统具有所需的性能特征。实际的飞机系统性能特征并不总是与设计或预测的系统性能特征相同。因此,需要进行系统飞行测试以确定实际性能。系统飞行测试被定义为确定飞机系统特性或评估飞机和武器系统完成任务的能力的过程。确定飞机系统性能取决于几个学科的基础知识,包括:雷达、通信、光电和导航。测试团队必须了解用于收集确定系统性能各个要素所需数据的基本测量、仪器技术和设备。团队使用这些学科来
摘要:随着工业 4.0 的引入,职业健康和安全面临着新型危害。许多工业 4.0 创新都涉及提高机器智能。这些特性使得工业 4.0 应用中的社会技术工作本质上更加复杂。同时,系统故障对用户来说可能变得更加不透明。本文回顾并评估了安全分析方法,一方面是社会技术系统中交互耦合的分解,另一方面是故障可处理程度;后者被用作复杂性的代理。先前的文献证实,传统的健康和安全风险评估方法无法或“不适合”处理这些系统特性。本文研究了引入与复杂性思维相关的新范式和安全方法的必要性,并借鉴了复杂自适应系统研究的理论,所有这些都是为了评估工业 4.0 引入的突变危害领域。同时,这篇评论也明确指出,没有一种万能的方法。职业健康与安全 (OHS) 涵盖许多不同的危害类型,需要结合旧的、新的和尚未开发的安全评估方法。
系统识别方法通过对动态系统的输入和输出进行测量,组成一个数学模型或一系列模型。提取的模型可以表征整个飞机或组件子系统行为(如执行器和机载信号处理算法)的响应。本文讨论了频域系统识别方法在飞机飞行控制系统的开发和集成中的应用。使用频率响应综合识别 (CIFER ® ) 系统识别工具,说明了如何提取和分析从非参数频率响应到传递函数和高阶状态空间表示等不同复杂度的模型。文中展示了艾姆斯研究中心众多飞行和模拟程序的测试数据结果,包括旋翼机、固定翼飞机、先进短距起飞和垂直着陆 (ASTOVL)、垂直/短距起飞和着陆 (V/STOL)、倾转旋翼飞机和风洞中的旋翼实验。对于这一大类系统,实现了出色的系统特性和动态响应预测。示例说明了系统识别技术在提供飞机开发整个生命周期(从初始规格到模拟和台架测试,再到飞行测试优化)的动态响应数据集成流方面的作用。