2020年10月15日,梅林约克代理主席澳大利亚能源市场委员会通过AEMC网站Dear York,Project ERC0280提出:将储能系统集成到NEM清洁能源委员会(CEC)是澳大利亚清洁能源行业的峰值机构。我们代表数百家在可再生能源和能源存储中运营的领先企业以及7,000多个太阳能和电池安装程序。我们致力于加快澳大利亚能源系统的转变,从而使澳大利亚的能源系统更聪明,更清洁。CEC欢迎有机会对澳大利亚能源市场运营商(AEMO)于2019年8月提交的NEM规则变更请求的集成存储系统发表评论。此规则更改请求为将清晰度和灵活性注入规则框架,并确保将存储技术正式认可并纳入国家电力市场(NEM)。CEC强烈支持NEM中存储技术的创新,开发和部署,以及可变可再生能源产生的不断增长。清楚地阐明和简化集成存储的框架的论点很明确。AEMO 2020集成系统计划(ISP)概述了支持26-50GW的新可再生能源所需的投资,该投资将在2040年之前开发。ISP指出,将需要6-19GW的新调度资源,并正确地指出,可调度容量的大部分投资都将在泵送的水电或电池资源2中。ISP指出,将需要6-19GW的新调度资源,并正确地指出,可调度容量的大部分投资都将在泵送的水电或电池资源2中。图2.4在咨询文件中还指出,超过16GW的存储将在ISP中央方案下开发到2022年之后。根据ISP方案数据,可以合理地期望未来20年的实际存储开发将属于ISP预测的上端。鉴于对存储资源进行投资的强烈需求,此规则更改是及时的,可以为当前和未来的市场参与者提供投资确定性和清晰度,这些参与者正在考虑开发存储资产,无论是独立或与当前或将来的生成器共同关注它。澳大利亚能源市场委员会(AEMC)正确地指出了该规则变更请求与能源安全委员会(ESB)的关系,以评估优点和
抽象背景:波能代表了最有希望的可再生能源之一,因为其理论上的巨大潜力。然而,由于波能的高度随机性质,如今网格连接系统的电气合规性是一个很好的问题。方法:在本文中,由锂离子电池和飞轮组成的混合储能系统(HESS)耦合到以网格连接模式运行的波能转换器(WEC)。该研究是使用与位于欧洲海岸的三个不同地点有关的实际年度波动概况进行的。同时扰动随机近似(SPSA)原理是在波能量转换系统中作为HESS的实时功率管理策略实现的。结果:获得的结果证明了拟议的HESS和SPSA功率管理与WEC的实施是如何在共同耦合(PCC)的同时降低80%以上的功率振荡的,同时证明了在所研究的站点上开发的管理策略的鲁棒性。此外,由于HESS整合而导致的平均能量罚款略高于5%,并且相对于飞轮征求力,电池招标降低了64%以上,这有助于延长其寿命。结论:可再生生成系统中的HESS整合使WEC生产最大化,同时平滑PCC的功率。具体来说,飞轮击hess以及实施的电源管理策略可以提供出色的
NERC 副总裁 Howard Gugel GE 首席技术官 Kwok Cheung PJM 首席工程师 Vernova Hong Chen 小组讨论 5 上午 10:15 上午休息 6 上午 10:30 进行系统集成调查 - Alex Chavez 和 Julia Lee,TMs SETO
关键系统、其操作频段和要求需要进行表征并与其他系统集成。人机系统与硬件和软件元素的最佳集成对任务执行的多个方面都有影响,包括人类健康和绩效、风险缓解、有效设计和功能、增强安全性以及降低生命周期成本。人机系统集成 (HSI) 领域代表了一种跨学科、全面的跨领域方法,涵盖了将人作为系统考虑因素和目标集成到所有其他系统组件和多个领域中的技术和管理流程。除了人类活动之外,HSI 还涵盖培训、运营和支持维度。此外,HSI 是系统工程实践的重要推动因素,强调人机系统方面,以优化完全集成的系统性能,同时在开发的最初阶段系统地融入所有用户的需求。与国家太空探索运动一致,NASA 正在开发 Gateway,这是一个月球轨道平台,将作为宇航员栖息地,支持前往深空的交通,验证新技术和系统,并充当科学实验室和通信中心等用途。它是通过可进化的基础设施和先进技术将人类探索延伸到深空的阶段的基本要素,支持其他探索架构元素的组装和物流。为了探索 HSI 在任务(系统的系统)生命周期中实施的现状和未来计划,HSI 员工资源组以 Gateway 计划为案例研究,举办了一次 HSI 研讨会。它揭示了约翰逊航天中心的不同组织如何在其流程中纳入 HSI,为 Gateway 的开发和运营做准备。研讨会重点关注 HSI 方法,用于实施 NASA 的六个 HSI 领域:人为因素工程、运营资源、宜居性和环境、可维护性和可支持性、安全性和培训。本文报告了研讨会的结果,以及 NASA 的一些 HSI 历史背景,以及使用员工资源组促进技术知识的成功。作者希望这些信息可用于传播最佳实践,以便将其转化为其他太空探索系统。关键词:人机系统集成、NASA、系统工程、NASA HSI 领域、员工资源组、系统的系统、人作为系统 首字母缩略词/缩写 ARGOS:主动响应重力卸载系统 CAST:机组人员自主调度测试 CDR:关键设计评审 ConOps:作战概念 CREAM:认知可靠性和错误分析方法 DDT&E:设计、开发、测试和评估 DoD:国防部 EED:电子发动机显示器 EMU:额外机动单元 ERG:员工资源组 FOD:飞行运营理事会 HCD:以人为本的设计 HITL:人在回路中
人机系统集成 (HSI) 表示当代系统工程的过程和结果,在系统的整个生命周期中同时考虑技术、组织和人为因素。此生命周期包括设计、开发、认证、交付、运营和退役。“系统”的概念代表人、组织和机器,它们在结构和功能方面在认知和物理上都有定义。系统的物理和认知属性可以设计为满足一组原则和标准,从而产生一组任务和活动方面的要求。在回顾以人为本的方法的发展之后,本章从以人为本的系统科学和发展的角度深入探讨了系统的总体问题。我们提出了 HSI 和以人为本的设计 (HCD) 的基础,并以航空航天和更普遍的生命关键工业实例为例,说明了理论发展。
迈向无人机系统融入国家空域系统:评估视觉观察员在白天、黄昏和夜间 sUAS 操作期间的即将发生碰撞的预测 Igor Dolgov 美国新墨西哥州立大学心理学系 id@nmsu.edu 提交日期:2015 年 11 月 2 日 摘要 在严酷的沙漠地区(完全没有人工光污染)进行了一项实验,以评估视觉观察员与轻型运动载人飞机和小型无人机系统(sUAS;Raven RQ-11B 或 Wasp III)保持视线并预测它们之间即将发生的碰撞的能力。我们研究了夜间和黄昏操作设置对观察员表现的影响(与白天相比),并操纵了关键视觉观察员相对于 sUAS 飞行员的位置。分析表明,夜间和黄昏时,轻型运动飞机的识别距离明显远于白天,观察者在夜间和黄昏时对 sUAS 的跟踪效果优于白天。此外,信号检测理论分析表明,当关键视觉观察者与 sUAS 飞行员位于同一位置时,碰撞预测率更高。讨论了夜间飞行安全和 sUAS 融入国家空域系统的影响。简介 在线巨头亚马逊、Facebook 和谷歌最近收购了无人驾驶汽车制造商,这表明这些技术将在我们国家可预见的未来发挥越来越重要的作用 (Solomon, 2014)。由于小型无人机系统 (sUAS) 的初始成本相对较低,运营费用也较低,而且可用于航空摄影和其他传感应用,预计该行业将在民用/商业领域近期内快速增长(北德克萨斯州政府委员会,2011 年)。另一个扩张的动力是公共安全实体(联邦和地方执法部门、边境巡逻、急救人员等)的兴趣收购和运营 sUAS 以建立/增强其航空能力(国会预算办公室,2011 年;国会图书馆华盛顿特区国会研究服务处,2012 年;美国空军,2009 年)。路线图概述的对研究、改革和监管的迫切需求随着两则近期新闻而引起公众关注尽管无人机系统具有巨大优势,但将其整合到国家空域系统会面临许多技术、安全、隐私、法律和监管挑战 (Anand, 2007; Carr, 2013; Dalamagkidis, Valavanis, & Piegl, 2008, 2011; DeGarmo and Nelson, 2004; 国际民用航空组织, 2011; Ravich, 2009),这些挑战已在美国联邦航空管理局 (FAA, 2013a) 的国家空域系统 (NAS) 民用无人机系统 (UAS) 整合路线图中进行了审查。
我们在太空采购方面的三大优先事项包括:加快采购速度,以便更快地提供新的能力,超越我们的对手,保持我们从太空获得的技术优势;使我们的太空架构更具弹性,以便在危机和冲突时期能够依靠它;将我们的太空架构与其他作战领域和国防部的作战需要相结合,为我们的作战人员提供战略优势。
“能源系统整合”或“部门耦合”有多种驱动因素,涵盖气候影响缓解和经济因素,以及社会和监管考虑因素。一个关键问题是“什么是部门耦合,它如何影响能源系统的灵活性?”这里的“能源系统”包括几个部门:电力、天然气、热力和运输,在大多数国家,这些部门几十年来一直独立存在——除了通过热电联产装置进行耦合。在能源系统整合中,一些部门可能为其他部门提供灵活性,而其他部门在互联时则需要灵活性。为了支持这些部门之间的协同作用,重要的是探索和量化相互作用,并寻找这些整合如何提供灵活性和其他好处的例子。具体从电力部门的角度来看,重要的是确保互联系统具有足够的灵活性,以支持脱碳目标,例如《巴黎协定》中设定的目标,同时确保运营可靠性。在本文中,我们考虑两种主要的灵活性类型。首先是部门和资源之间的灵活性,随后称为资源灵活性,包括在不同燃料类型之间转换。这可以是发电侧也可以是需求侧,通常是为了脱碳而实现的(图 1)。第二种灵活性是部门内部的灵活性,指的是运营灵活性,例如通过资源共享、运营控制和多样化实现的储备或辅助服务的提供。对于照明、供暖、制冷和运输等能源服务,预计会从一个供应部门过渡到另一个供应部门,甚至过渡到多个选择。因此,资源灵活性将会增加。
能源系统集成 (ESI) 是一种新兴范式,是欧盟能源辩论的中心。ESI 从整体上看待电力、天然气和热力部门,以提供清洁、可靠和负担得起的能源系统。通过识别和利用部门内部和部门之间的协同作用,ESI 旨在提高能源系统的灵活性,最大限度地整合可再生能源和分布式发电,并减少对环境的影响。虽然已经从技术角度研究了 ESI 支持技术,但 ESI 的经济、监管和政策层面尚未分析。本文以多步骤的方式讨论了 ESI。我们首先关注 ESI 支持技术的经济性。我们简要讨论了欧盟国家监管机构如何激励这些技术的采用。我们确定了 ESI 的主要经济和政策障碍,并提出了克服这些障碍的政策解决方案。我们得出的结论是,欧盟目前的监管框架无法刺激足够的 ESI 投资,只有通过适当的激励设计才能实现 ESI 范式。
本研究评估了一家化工厂,该工厂通过电气化重整和二氧化碳分离将沼气转化为负排放“绿色氢气”。由于避免了燃烧和通过压力壁的传热,重整器的电气化可以提高合成气产量、紧凑反应器设计和灵活操作。通过部分负荷过程模拟以及通过每小时离散化的年度模拟进行工厂规模和运行优化,评估了该工艺与太阳能和风能发电的结合。研究评估了具有不同风能和太阳能可用性的欧洲不同地区,考虑了 (i) 可再生能源和电池技术的短期和长期成本情景,以及 (ii) 不同的工厂规模(沼气容量从 390 到 3900 Nm3/h)。本文的总体范围是计算生产氢气的成本以及在不同成本情景下安装在不同地点的工厂的灵活性的经济价值。在设计负荷下,评估过程每生产一千克氢气消耗 17.7 千瓦时电力,并在所生产的氢气中保留 96% 的沼气化学能。此外,76% 的生物碳被回收为高纯度液态二氧化碳,实现高达 −9 千克二氧化碳/千克氢气的负排放。当使用 95% 的可再生能源供电时,氢气生产成本为 2.5 至 2.9 欧元/千克(长期 REN 成本情景和大型灵活工厂)到 5.9 – 7.1 欧元/千克(短期 REN 成本情景和小型非灵活工厂)。对于小型工厂,灵活性可以使氢气生产成本在短期可再生能源成本情景下相对于非灵活工厂降低 11 – 16%,在长期成本情景下降低 1 – 4%。对于大型工厂而言,采用灵活工厂可以在短期内将氢气成本降低 17 - 23%,在长期内将氢气成本降低 6 - 22%。