摘要 本文提出了一种增强型三层预测分级电源管理框架,以实现孤岛微电网的安全经济运行。保证微电网经济运行的三级控制建立在基于半定规划的交流最优潮流模型之上,该模型定期向二级控制发送功率参考。为减轻可再生能源发电和负荷带来的不确定性,提出并实施了一种集中式线性模型预测控制 (MPC) 控制器用于二级控制。MPC 控制器可以通过密切跟踪来自三级控制器的参考信号来有效地调节微电网系统频率,并且计算复杂度较低。实施基于下垂的初级控制器来与次级 MPC 控制器协调,以实时平衡系统。微电网电源管理框架中模拟了同步发电机 (SG) 和太阳能光伏 (PV)。提出了一种统一线性输入状态估计器 (ULISE),用于 SG 状态变量估计和由于网络物理系统组件受损等而导致的控制异常检测。仿真结果表明,可以准确估计 SG 状态,同时可以有效检测控制信号的不一致性,以实现增强型 MPC。此外,与传统的比例积分 (PI) 控制相比,所提出的分层电源管理方案表现出卓越的频率调节能力,同时保持较低的系统运行成本。
维持发电和需求之间的电力平衡被普遍认为是将系统频率保持在合理范围内的关键。这对于基于可再生能源的混合动力系统 (HPS) 尤其重要,因为此类系统更容易发生中断。本文提出了一种著名的改进型“分数阶比例积分双导数 (FOPIDD2) 控制器”作为创新型 HPS 控制器,以克服这些障碍。推荐的控制方法已在风能、再热热能、太阳能和水力发电以及电容式储能和电动汽车等电力系统中得到验证。通过将改进后的控制器与常规 FOPID、PID 和 PIDD2 控制器进行比较,可以评估其性能。此外,使用新设计的算法术语鱿鱼游戏优化器 (SGO) 优化了新构建的 FOPIDD2 控制器的增益。将控制器的性能与灰狼优化器 (GWO) 和水母搜索优化等基准进行了比较。通过比较最大频率下冲/过冲和稳定时间等性能特征,SGO-FOPIDD2 控制器优于其他技术。分析并验证了所提出的 SGO 优化 FOPIDD2 控制器在各种负载场景和情况下承受电力系统参数不确定性影响的能力。结果表明,无需任何复杂设计,新控制器就可以稳定工作并以适当的控制器系数调节频率。
摘要 随着基于逆变器的可再生能源 (IBR) 的快速整合,岛屿电力系统的能源脱碳进程不断加快。此类系统的独特之处在于,由于潜在的发电中断或可再生能源不可预测导致的不平衡,频率会快速变化,这对在没有外部支持的情况下维持频率最低点提出了重大挑战。本文提出了一种具有数据驱动的频率最低点约束的机组组合 (UC) 模型,包括频率最低点或最小惯性要求,有助于限制发电机严重停运后的频率偏差。这些约束是使用线性回归模型制定的,该模型利用了现实世界的全年发电调度和动态模拟数据。通过在实际岛屿电力系统中使用历史天气数据进行为期一年的模拟,验证了所提出的 UC 模型的有效性。本文还评估了从实际系统运行假设中得出的替代最小惯性约束。研究结果表明,与替代的最小惯性约束相比,所提出的频率最低点约束显著改善了高光伏 (PV) 渗透水平下的系统频率最低点,尽管发电成本略有增加。
摘要 - 未来几年,由于可再生能源 (RES) 份额的增加,电力系统将面临电力频率不稳定的问题。RES 通过电力电子转换器集成到电力系统中。RES 的运行和控制与传统能源截然不同。本文重点研究了 RES 份额上升对电力系统频率稳定性的影响及其可能的解决方案。在发生干扰时,RES 不会参与频率调节过程。尽管如此,它们仍会因输入能量的间歇性而对电力系统产生干扰。RES 没有额外的有功功率用于频率调节,因为它们已经在最大功率点运行。这些基于电力电子的发电机不像传统发电机那样具有惯性。无惯性系统会对频率变化率 (RoCoF) 和频率最低点产生不利影响。这在具有不同场景的 IEEE 9 总线系统上得到了证明。根据该分析,RES 应在干扰期间提供惯性响应。本文提出的改进虚拟惯性控制 (M-VIC) 技术通过使用外部储能系统 (ESS) 来模拟传统发电机的惯性。在 M-VIC 中,惯性响应通过控制 ESS 提供的功率的速率和持续时间来复制。所提出的技术可以更有效地降低频率最低点和 RoCoF,同时更好地利用 ESS。为了证明这一点,在 MATLAB R2019a 中模拟了 PV 集成单区域电力系统模型。
2020 年 5 月 28 日 2012 年至 2017 年期间,澳大利亚国家电力市场 (NEM) 一直问题重重,包括煤电厂突然关闭、国内天然气市场吃紧以及电价大幅上涨。随后从 2017 年到 2020 年,供应方做出了一个投资超级周期反应 — — 12000MW 的电厂承诺,涉及 105 个项目,总投资超过 200 亿美元 — — 其中大部分是可变可再生能源。出现的问题包括进入滞后、连接延迟、系统频率超出正常频带、系统强度下降、频率控制辅助服务成本上升以及在安全约束调度过程中运营商干预增加。市场机构措手不及。然而,市场机构并没有发现和解决紧急问题,而是提出了一系列市场重新设计提案,重点关注未来投资和资源充足性。在本文中,我们分析了近期的 NEM 表现,发现所有紧迫问题都与实时电力系统安全有关,而非资源充足性,并反映了创纪录水平的同时(异步)新进入导致的变化率问题。要解决这个问题,需要建立“缺失市场”来恢复电力系统的弹性。根本性的市场重新设计是一种干扰——它很可能成为必要,但对于为什么会这样以及何时需要这样做,并没有统一的共识。就目前而言,没有任何改革提案能够解决 NEM 现有的紧迫问题。
2020 年 5 月摘要 2012 年至 2017 年期间,澳大利亚国家电力市场 (NEM) 一直问题重重,包括煤电厂突然关闭、国内天然气市场吃紧以及电价大幅上涨。随后从 2017 年到 2020 年,供应方做出的反应是一个投资超级周期——12000MW 的电厂承诺,涉及 105 个项目,总投资超过 200 亿美元,其中大部分是可变可再生能源。出现的问题包括进入滞后、连接延迟、系统频率超出正常频带、系统强度下降、频率控制辅助服务成本上升以及运营商对安全约束调度过程的干预增加。市场机构措手不及。然而,市场机构并没有发现和解决紧急问题,而是提出了一系列市场重新设计提案,重点关注未来投资和资源充足性。在本文中,我们分析了近期的 NEM 表现,发现所有紧迫问题都与实时电力系统安全有关,而非资源充足性,并反映了因创纪录水平的同时(异步)新进入而导致的变化率问题。要解决这个问题,需要建立“缺失市场”来恢复电力系统的弹性。根本的市场重新设计是一种干扰——它很可能成为必要,但对于为什么会这样以及何时需要这样做,并没有统一的共识。就目前而言,没有任何改革提案能够接近解决 NEM 现有的紧迫问题。关键词:可再生能源、能源市场、投资周期 JEL 代码:D24、G31、L94。