可通过两个额外的模拟信号输入输入 RDS 或 SCA 信号。当然,还提供了用于同步外部 RDS 编码器的导频音输出。接口包括用于模拟左/右、AES/EBU、MPX 的 XLR 以及用于其他信号的 BNC。对于未来的应用(例如在单频网络中运行),发射器可以同步到外部频率参考(10 MHz)或时间参考(1 pps)。
第四系列紧凑型设备特别适合在空间受限的场景中使用。这些设备包括完整的本地和远程控制,以及特定场景可能需要的所有可选功能,例如 GNSS 接收器、卫星接收器 (DVB-S/S2)、地面信号输入 (DVB-T/T2) 以及内置 1+1 和 N+1 冗余功能。它们采用超宽带 Doherty 技术,在不影响真正智能的运营和维护的情况下,实现了重要的能耗成本降低。
传动装置:静液压传动装置,在负载下全动力换挡,无论是在改变方向(前进和后退)时还是在范围之间。在所有范围内均可实现最大牵引力。“英寸/制动踏板”用于可变机器速度控制,并在发动机转速恒定时将动力传输到铲斗液压系统。多功能杆用于改变方向、差速锁和使用伺服控制。车轴:由两个刚性门式车轴实现全轮驱动。差速锁:两个车轴均采用液压驱动的 100% 差速锁。车架:坚固的前后车架,机器人焊接。铰接式摆动接头可实现最佳机动性和牵引力。
摘要 - 自2008年以来,紧凑型MUON电磁阀(CMS)检测器磁铁一直在CERN的大型强子对撞机(LHC)上运行。它必须运行,直到高亮度LHC运行到2040年以后。CMS磁铁包含一个大型超级导电螺线管,可提供3.8 t的磁场,直径为6 m,长度为12.5 m。线圈由铝制稳定的Rutherford NB-TI/CU电缆构建,并在4 K下以沸腾模式下的间接传导冷却,并用沸腾的氦气进行沸腾模式。磁铁在2006年在Cern Point 5的Surface Hall委托。随后在2007年将其转移到地下实验区域,从那时起,它被推荐并成功地以3.8 T的名义字段进行操作。在本文中介绍了磁铁操作数据的摘要,以及观察到的纯铝导体稳定剂的残余电阻率比(RRR)的进行性变化,这是操作周期和磁铁热身的函数。描述了遇到的技术问题,以及用低温和真空抽水实现的解决方案,以及在控制系统的LHC关闭期间进行的升级,低温和供电电路,该电路已实施了自由轮晶状体系统。
量子计算机需要误差校正以实现量子优势。他们还需要校准大量参数,以正确操作Qubits,这可能只有53 QUBITS的Google Sycamore需要几个小时。扩展量子计算需要快速,可扩展和屈曲反馈以实现量子误差校正(QEC)和加速校准。QEC和校准都需要电子设备,以测量,计算和应用最低潜伏期的反馈。使用当今的电子设备必须扩展到数千个Qubits。FPGA是理想的选择,因为它们可以重新编程以满足不同的实验需求,同时达到了非常低的反馈延迟。典型的量子操作实验(图1)涉及在室温下通过数字转换器(DAC)(DACS)和对数字转换器(ADCS)的模拟转换器(ADC)的FPGA网络。用于自旋Qubits,控制信号由两种类型组成。首先,基于纳秒坡道的准静态控制,以调整Qubits的潜在井和耦合以改变其状态。其次,通过I/Q调制控制的Ra-dio频率脉冲,用于测量或基于共振的控制。数字混合用于实现更复杂的控制方案和脉搏工程。完整的数字发电提高了灵活性并减少了噪声源。我们使用直接生成的坡道和频率梳子提出了可扩展的,复杂的信号发生器(CSG),以减少
摘要 — 量子计算领域的最新进展引发了新一轮的密码系统创新,因为现有的公钥密码系统被证明容易受到成熟量子计算机发起的攻击。随着这一创新,已经提出了几种可能的后量子密码 (PQC) 候选密码算法,其中基于格的密钥封装机制 (KEM) Saber 是有前途的密码系统之一。注意到该领域的最新趋势更多地转向了 PQC 算法的有效实现,在本文中,我们建议在现场可编程门阵列 (FPGA) 平台上为 KEM Saber 提供一种新型紧凑型协处理器。具体而言,所提出的策略旨在获得一种适用于不同安全级别的 Saber 的通用方法,具有灵活的处理方式但复杂度较低。总的来说,我们进行了四层重大创新以完成所提出的工作:(i)我们以通用格式制定并推导了上述 KEM Saber 主要计算密集型操作(即多项式乘法)的可扩展矩阵起源处理 (SMOP) 策略;(ii)然后,我们介绍了基于 SMOP 策略的多项式乘法算法的细节,包括相对于 Saber PQC 方案的算法运算和结构 / 实现创新;(iii)我们还遵循了现有的协处理器设计流程
所提出的 VCO 架构基于参考文献 [16-18] 中研究的 Colpitts 结构以及作者在 [12] 中提出的结构,如图 2 所示。该振荡器的有源部分由两个晶体管 pHEMT 1 和 pHEMT 2 组成:每个晶体管有 4 个指状物,栅极长度和宽度分别为 0.25 µm 和 20 µm。指状物数量越多,输出功率就越大 [19]。每个晶体管都偏置在工作点 (VDS=2.2 V, VGS -0.6 V),三个电感 Ld1、Ld2 和 Lg 分别等于 0.15 nH、0.15 nH 和 0.1 nH。电路的性能在很大程度上取决于偏置条件 [20],因此偏置电压和电感的值需要仔细选择。 VCO 的谐振电路基于两个源漏短路晶体管 pHEMT 3 和 pHEMT 4。因此,这两个晶体管充当变容二极管,其电容值由施加到其栅极的电压源 Vtune 调整。
摘要:实施使用相变材料的热能存储系统以支持可再生能源的整合是允许通过增加自耗和系统效率来减少建筑物能耗的关键因素。选择最合适的相变材料是成功实施热能存储系统的重要组成部分。本文的目的是介绍用于评估潜在相变材料在两种创新储能系统中的适用性的方法,其中一种主要用于提供冷却,而另一种为住宅建筑提供供暖和生活热水。选择方法依赖于定性决策矩阵,该矩阵使用相变材料的一些共同特征为每种材料分配一个总分,以便比较不同的选项。还对最佳候选材料进行了实验表征,以帮助做出最终决定。结果表明,这两种系统都有一些最合适的候选材料,其中,对于用于提供冷却的系统,RT4 是最有前途的商业相变材料,而对于用于提供供暖和生活热水的系统,最有前途的候选材料是另一种商业产品 RT64HC。
太赫兹辐射介于红外和微波之间,最常见的频率范围是 0.1 THz 至 10 THz [1]。由于缺乏有效的、在室温下工作的、紧凑的、成本高效的光源和探测器,太赫兹是整个电磁辐射谱中研究最少的范围之一,直到 20 世纪 80 年代才开始被探索。自过去几十年以来,太赫兹辐射谱引起了研究人员的注意。该辐射范围的具体特征包括非电离、非侵入性、在水中的高吸收率和弥散性(水是生物组织的主要成分)。除了国防应用 [2、3] 和危险物质检测 [4-6] 之外,太赫兹辐射对医学诊断也非常有用 [7]。亚毫米波长最重要的特性是尚未发现其对人体组织有任何负面影响 [8-11]。在医学应用中,这种类型的辐射可用于检测乳腺癌和皮肤癌 [ 12 - 16 ]、研究引入血液循环的标记物,甚至用于分析人眼的角膜 [ 17 , 18 ]。在开发可在大量患者身上测试的设备时,太赫兹辐射的无创性非常重要,它比基于电离辐射的传统方法更具成本效益,诊断也更安全。水分子会强烈衰减太赫兹辐射,因此所研究的生物样本必须很薄或放在由水组成的材料表面。透射配置是可能的,但是它需要准备类似于组织病理学的生物样本,这在活体患者中是不可接受的。因此,反射配置是必要的,我们的研究重点将放在皮肤组织上。这项工作的主要目的是将先进的衍射光学元件 (DOE) 应用于太赫兹发射器和检测器装置。对比健康和癌变皮肤的光学特性可以区分危及生命的病变。由于太赫兹扫描的分辨率有限(波长相对较长),医生的检查无法替代,但这种设备在预防护理中非常有用。我们的目标是设计和制造薄型 DOE,这将使太赫兹皮肤扫描仪更加紧凑和实用。我们提出了一种基于利用的新颖方法,该方法是该领域的新方法