谱超图稀疏化是将众所周知的谱图稀疏化扩展到超图的一种尝试,在过去几年中得到了广泛的研究。对于无向超图,Kapralov、Krauthgamer、Tardos 和 Yoshida (2022) 证明了最佳 O ∗ ( n ) 大小的 ε -谱稀疏器,其中 n 是顶点数,O ∗ 抑制了 ε − 1 和 log n 因子。但对于有向超图,最佳稀疏器大小尚不清楚。我们的主要贡献是第一个为加权有向超图构造 O ∗ ( n 2 ) 大小的 ε -谱稀疏器的算法。我们的结果在 ε − 1 和 log n 因子范围内是最优的,因为即使对于有向图也存在 Ω(n2) 的下限。我们还展示了一般有向超图的 Ω(n2/ε) 的第一个非平凡下界。我们算法的基本思想借鉴了 Koutis 和 Xu (2016) 提出的基于 spanner 的普通图稀疏化。他们的迭代采样方法确实有助于在各种情况下设计稀疏化算法。为了证明这一点,我们还提出了一种类似的无向超图迭代采样算法,该算法实现了最佳大小界限之一,具有并行实现,并且可以转换为容错算法。
加强筋深度,英寸。杨氏模量,Msi(1Msi = 106psi)应力-应变曲线上的正割模量(=a/E),Msi 应力-应变曲线上的正切模量(= dm/d~),Msi 参数,(t/b)(E/ucy)l/2 船体梁安全深度系数,英寸。4 横截面的惯性矩,英寸。屈曲系数长度,英寸。(船舶;也称梁柱(附录 IV)弯曲力矩,in-lb。屈曲板载荷中纵向半波数,沿载荷法向截面每单位距离的力,lb/in。理论强度关系中柱轴向力的指数,lb。压力,psi 梁上的横向集中载荷,lb。应力比,等式。(18),(19) 圆柱半径(in。)加筋板设计中使用的参数(pal/t),psi 屈曲板板厚中的横向半波数,in。
读者可能会对术语 DMDB(专用主、专用保护)的缺失感到好奇。我们第一次听到这个术语是在 2016 年新墨西哥州阿尔伯克基举行的 ITRS 上。介绍该术语的作者没有提供定义。术语 DMDB 也用于 2016 年 EMBC 报告中,但同样没有提供具体定义。使用专用一词意味着绳索救援系统中的停滞(即专门分配给或用于特定服务或目的)。十多年来,许多绳索救援队一直在通过在初始边缘过渡后向保护线添加下降控制来改变他们的 SMSB 系统。而这些救援队一直在他们的主线操作中加入一个自启动组件,比如普鲁士绳。本质上,SMSB 是一种混合系统或绳索救援线管理的连续体——我们将在本文后面更深入地探讨这些细节。
摘要 目前,人工智能的应用已渗透到生活的方方面面。除了协助智力工作、解决复杂的计算问题或分析各种类型的数据外,上述技术还可应用于为人们提供安全保障的过程中。本文提出了一种基于人工智能的紧急识别系统,旨在及时发现和通报危险情况。所提出的解决方案将人的“举手”姿势视为紧急情况,表明存在潜在危险。因为人们在面临潜在危险时,大多会被迫举起双手,这种姿势会引起注意,强调对某些事件的情绪反应,通常被用作危险的标志或征服的手段。系统应识别人的姿势,检测它,并随后通报威胁。本文提出了一种基于人工智能的紧急情况识别系统,使用 PoseNet 机器学习模型检测人体姿势“举手”以进行紧急情况识别。假设仅使用 6 个关键点可以减少系统的计算资源,因为结论是在考虑较少数据量的情况下得出的。为了进行研究,创建了一个包含 1510 张图像的数据集来训练人工智能模型,并验证了决策。使用监督机器学习方法对紧急情况的定义进行分类。替代方法:基于准确性的支持向量机、逻辑回归、朴素贝叶斯分类器、判别分析分类器和 K-最近邻分类器进行了评估。总体而言,本文提出了一种全面而创新的紧急情况识别方法,可使用所提出的系统快速响应紧急情况。
8001001 ),旋涡振荡 30 秒混匀,室温静置 5 分钟后再进入步骤 3 的操作。 3. 加入 15 ml Buffer L7 ,盖紧管盖,用力上下摇晃混合均匀。 4. 加入 8 ml Buffer EX ,盖紧管盖,用力上下摇晃混合均匀。≥ 12,000 g 离心 5 分钟。 5. 在一个洁净的 50 ml 离心管中加入 8 ml 异丙醇备用。 6. 吸取步骤 4 中的所有离心上清液(约 25 ml )转移到步骤 5 备用的 50 ml 离心管 中,盖紧管盖,混匀上清液和异丙醇。
本文介绍了一种用于评估受集中力作用的三材料复合梁横向挠度的实验装置。该装置中使用的三种材料是钢、铝和木材。在本实验中,考虑了两种层粘合方法:胶合和螺栓连接。在胶合配置中,三个堆叠的层使用商用胶水沿梁长度相互连接。对于螺栓系统,各层使用四个对称分布的螺栓和螺母连接。将两种粘合方法的梁横向挠度实验结果与理论计算进行了比较。比较结果表明,胶合系统挠度数据与理论更一致。本文还采用了等效截面法来求解复合梁弯曲应力。最后,彻底研究了复合梁的关键几何和材料参数对梁弯曲应力的影响,重点是承受机械弯曲载荷的电子组件的结构分析。
只需拍摄一张照片(拍摄桥梁),即可轻松创建 3D 模型,从而可以重现实际现场,避免因疏忽而导致的重新检查。此外,第三方也更容易检查 3D 模型,从而提高检查质量。 ・您创建的 3D 模型可以共享。如果有 3D 模型,我们可以解释图纸
在通过雷达或电动检测系统进行威胁检测后,光束导演使用高分辨率热成像器获取目标。然后使用超鼻涕的视场跟踪目标,并通过高频带宽度,快速转向镜跟踪指定的瞄准点。