大豆是一种从野生大豆(Glycine soja sied。&ZUCC)在东亚6,000至9,000年前,随着中国,韩国,日本和世界其他地区的人类食品和牲畜饲料的广泛生长。全球气候变化导致了大豆种植和育种方面的一系列挑战。随着高通量基因组测序技术的发展,有关大豆的基因组信息现在更容易获得,并且对分子繁殖很有用。然而,关于作物发育的表观遗传法规仍然在很大程度上尚未开发。在这篇综述中,我们总结了大豆对生物和非生物胁迫的适应性调节机制的最新覆盖,这在组蛋白修饰和microRNA(miRNA)方面尤其重要。最后,我们讨论了这种知识对组蛋白修饰和miRNA在大豆分子繁殖中的潜在应用,以在不断变化的环境中证明作物的性能。
玉米的生产和撒哈拉以南非洲的生产力受到各种因素的约束。评估新开发的精英亲属线的遗传多样性可以帮助识别具有理想基因的线条并探索杂种育种的遗传相关性。这项研究的目标是评估遗传多样性和种群结构的水平,并确定适当的聚类方法,以将玉米含量分配为杂种群体。使用多样性阵列技术(DARTTAG)中密度平台对从三个来源种群中提取的三百七十六个精英杂种进行了基因分型。从1904年获得的3,305个SNP标记的结果显示,平均标记物多态性信息含量(PIC)为0.39,观察到0.02的杂合性,基因多样性为0.37,次要等位基因频率为0.29,Shannon和Simpson Intices,分别为6.86和949.09,分别为6.86和949.09,以及787.70.70.70.70.70.70.70.70.70.70.70.70。最佳亚群是由基于混合的模型和主成分分析定义的三个。平均遗传距离为0.303,从0.03(TZEI 2772×TZEI 2761)到0.372(TZEI 2273×TZEI 2832)。对于376个精英杂交的认可杂质分类,使用IBS距离矩阵和平均链接聚类方法提供了最高的辅助相关系数(0.97)。使用IBS距离鉴定了三个杂种组(HG),而Hg 1的平均连锁聚类方法具有188个近交,Hg 2具有137个,Hg 3具有59个近百列。基于血统的系统发育树与确定的异质基团表现出很大的一致性。基于潜在人口结构的F统计量显示,亚种群之间的差异为10%,遗传分化水平中等的亚群中的差异为90%(0.10)。精英杂交线表现出高度的遗传多样性,这可能有益于开发新的,早期培养的白色杂种,以减轻撒哈拉以南非洲的生产约束。
power modules under low temperature variations A. Halouani a, * , Z. Khatir a , R. Lallemand a , A. Ibrahim a , N. Degrenne b a Gustave Eiffel University, Paris-Saclay University, ENS Paris-Saclay, CNRS, SATIE, 78000 Versailles, France b Mitsubishi Electric R&D Centre Europe, 1 Allée de Beaulieu, 35708 Rennes,法国摘要在本文中,提出了IGBT功率模块功率循环期间电锥降解的新寿命预测模型。该模型基于实验裂纹繁殖分析和塑性菌株经验定律。在实验中,在高压下分别在高压下进行开关模式下的两个电源循环测试,并使用温度摆动∆𝑇!= 30°𝐶和∆𝑇!= 40°𝐶和最小温度𝑇!,#$%= 55°𝐶。已经选择了DUTS和测试条件,因此仅观察到芯片顶部互连的降解。在测试期间测量了状态电压(V CE),作为导线降解的指标,金属化和样品在不同的衰老阶段进行除去。将去除的样品横截面以观察循环的裂纹传播演化。涉及塑性应变经验法,我们使用了文献的结果,这些结果显示了塑性应变(∆𝜀&')随链条接触裂纹生长的演变。作为结果,这种新的终身预测模型基于铝线键的修改法定定律IGBT的疲劳显示了测试结果的良好拟合,并用于预测寿命。最后,估算了经过测试的IGBT模块的寿命,并用于验证所提出的模型的有效性。1。简介
抽象斑点斑点(SB)是一种普遍的大麦叶子疾病,是由半野生真菌病原体索罗基尼亚人引起的。主要发生在全球潮湿的生长区域中,SB可能导致高达30%的收益率损失。遗传抗性仍然是疾病管理的最有效策略;然而,尽管先前鉴定出主要的抗性基因座,但大多数澳大利亚大麦品种都表现出敏感性。这项研究调查了澳大利亚大麦育种计划中的遗传结构潜在的斑点斑点抗性。连续两年使用单个分生孢子(SB61)在幼苗和成人生长阶段进行了抗药性。总共将337条大麦线与16,824个多态性飞镖seq™标记物一起键入。采用了两种映射方法:全基因组关联研究(GWAS)和基于单倍型的局部基因组估计值(局部GEBV)方法。两种方法都鉴定出在3H和7H铬的两个主要抗性相关区域,在跨生长阶段有效。此外,基于单倍型的局部GEBV方法揭示了GWAS未检测到的1H,3H和6H的抗性相关区域。单倍型堆叠分析强调了7H区域与其他抗药性单倍型相结合时,7H区域对成人植物抗性的批评作用,表明by-Gene的相互作用显着,并突出了斑点斑点耐药性的复杂,定量性质。这项研究证实了澳大利亚大麦繁殖种群中关键阻力基因座的存在,为斑点抗性抗性的遗传结构提供了新的见解,并强调了通过单倍型堆叠和全基因组预测方法增强抵抗力的潜力。
只有使用出色的精子,才有可能产生良好的胚胎。为此,精子的体外操作需要选择这些配子的技术。游泳和其他采用离心和精子填充过程的筛选方法就是这种情况。此类方法由于执行的简单性和低成本而受欢迎。另一方面,新方法,更复杂和严格,可以最准确地分离成熟的精子,重点是配子的生理和分子方面。一个例子是通过电泳选择,以确定质膜净电荷中的差异。精子结合测试与透明质酸鉴定具有透明质酸受体的配子,因此能够与卵母细胞结合。仍然,有磁微球激活的细胞选择
摘要对瓦罗阿击蛋白的饲养源细胞的摘要是一种特征,最近吸引了对蜜蜂育种的兴趣,以选择耐螨的Apis mellifera菌落。为了研究该性状的遗传结构,我们评估了一个样本。Mellifera Mellifera菌落(n = 155)来自瑞士和法国,并进行了全基因组关联研究,使用每个菌落500名工人进行下一代测序。结果表明,两个QTL显着(p <0.05),与destructor -destructor摄取的育雏细胞的回旋相关。最佳相关的QTL位于以前发现与修饰行为相关的区域的5号染色体上,这是对V. destructor的抗性性状,在a中。Mellifera和Apis Cerana。第二最佳相关的QTL位于DSCAM基因内含子中的4号染色体上,该基因与神经元接线有关。先前的研究表明,与神经元接线有关的基因与回顾和Varroa敏感卫生有关。因此,我们的研究证实了基因区域对5染色体在社会免疫中的作用,并同时提供了对蜂蜜蜜蜂常见螨抗性性状之间遗传相互作用的新见解。
对有效动物的繁殖一直是生产者的主要重点,不仅旨在提高利用能力,而且旨在满足对可持续性的社会需求。在过去的几十年中,下一代测序的进步彻底改变了我们对与动物健康和生产有关的调节机制的理解。这些进步,再加上新的分析方法,有助于弥合基因组到球的间隙,从而对选择性育种产生积极影响(Clark等,2020)。此外,通过CRISPR-CAS9系统进行的基因组编辑是一个范式转移,为引入遗传变异的新机会具有最大化动物生产的潜力(Banerjee和Diniz,2024; Mueller和Van Eenennaam,2022年)。在当前的研究主题(RT)中,我们收集了专家的评论,案例报告和原始研究文章,强调了高通量技术的进步及其在牲畜科学上的应用。我们的目标是概述最近的基因组技术,并增强我们对基因调节,表观遗传学,基因组结构及其串扰的理解,并具有与动物生产,营养,生殖,健康和环境适应的基础表型变化的串扰。此RT包括五个科学文章,涵盖了从基因组到表观基因组的研究主题,包括各种物种中的营养素和代谢组学。Chen等人的文章。提供了研究基因组结构变体(SV)的技术,方法和应用的全面概述。作者他们讨论了SV形成的机制,并提出了检测结构变体的方法的演变。此外,他们回顾了跨多种物种(牛,水牛,马,绵羊和山羊)的研究,以阐明表型性状和与SV相关的自适应遗传机制的差异的遗传基础。
在胚胎中混合母本和父本基因组不仅是有性生殖进化成功的原因,也是植物育种的基石。然而,一旦获得了有趣的基因组合,进一步的基因混合就会出现问题。为了快速固定遗传信息,可以生产双单倍体植物:允许仅具有来自一个亲本的遗传信息的单倍体胚胎发育,染色体加倍产生完全纯合的植物。双单倍体生产的有效途径是基于单倍体诱导系。单倍体诱导系与具有待固定基因组合的系之间的简单杂交将触发单倍体胚胎发育。然而,植物体内单倍体诱导的确切机制仍然是一个长期未解之谜。最近发现的触发玉米作物和模式植物拟南芥单倍体诱导的分子因子明确了与配子发育、配子相互作用和基因组稳定性相关的过程的重要作用。这些发现使得单倍体诱导能力能够应用于其他作物,并利用单倍体诱导物系将基因组编辑机制引入各种作物品种。这些最新进展不仅为下一代植物育种策略带来了希望,而且还为植物有性生殖的基本基础提供了更深入的见解。
1 POITIERS,国家科学研究中心UMR7267,《互动生态与生物学实验室》,TSA51106,86073 POITIERS,法国2学院2帕斯德研究所,生物图像分析单元,国家科学研究中心UMR3691,ParisCité大学,国家科学研究中心elisabeth.labruyere@pastteur.fr(E.L。); jean-christophe.olivo-marin@pastteur.fr(J.-C.O.-M。)3 Pasteur,蛋白质组学核心设施,生物学质谱单元质谱单元,国家科学中心,2024年2024年,巴黎大学Cité大学,法国75015 Paris,法国,法国,法国75015 Paris; Mariette.matondo@pastteur.fr 4国家科学研究中心药理学与结构生物学研究所UMR 5089,图卢兹大学IIIII-PAUL SABATIER,法国31077,法国图卢兹; Marie.locard-paulet@ipbs.fr 5 Proteomique Profi的国家基础设施-FR2048,2048法国Toulouse 6 C. nguillen@pastteur.fr(n.g。);这样的。: +33-(0)549454013(A.S.-L。); +33-(0)145688675(N.G.)