摘要。量子点红外光电探测器(QDIP)定位成为红外(IR)检测领域的重要技术,尤其是对于高温,低成本,高产,高收益检测器阵列所需的军事应用所需的技术。高操作温度(≥150k)光电探测器通过启用低温露水和斯特林冷却系统的成本降低了红外成像系统的成本,并被热电冷却器代替。QDIP非常适合在升高温度下检测中期光,该应用可能被证明是下一个量子点的商业市场。虽然量子点外延的生长和IR辐射的标记内吸收良好,但量子点非均匀性仍然是一个重大挑战。在150 K处的最新IR检测,而QDIP焦平面阵列的性能与77 K的HGCDTE相当可比。带隙工程以减少深色电流并增强多光谱检测(例如共鸣隧道QDIP),QDIP的性能和适用性将继续提高。
六角硼硝酸盐(H -BN)是多种应用的有前途的材料。自发现以来,它已被用于纳米电子和光电设备作为各种二维材料的最佳底物。此外,H -BN是中红外区域的天然双曲线材料,在那里,光子材料几乎没有选择。要了解结构和属性之间的关系,必须评估纳米级H -BN中的层数。在这里,使用仿真和实验的组合,我们系统地研究了几层H-BN的Fowler-Nordheim隧道效应,并准确地获得并验证了基本的物理参数,例如层依赖性有效质量。这项工作对基于GAN的金属/绝缘体/半导体(MIS)块的设计进行了系统的研究,该块很少,H-BN是绝缘层。发现,诸如H -BN层的数量,gan掺杂浓度以及接触金属的工作功能诸如结构和材料的功能,对这些MIS块的电气特征产生了显着影响,而理想的异质界面则是2D H -BN膜的互联网膜的痛苦,例如互化因素,例如互化因素,例如Inter -Interaps Interaps traps traps traps和Sraps sraps traps traps traps traps traps and sraps sraps。通过全面平衡关键因素的相互限制,这项工作可以实现基于GAN的MIS块,该块能够在较高的电压,电流或功率条件下进行操作,而与其对应物相比。本文旨在提供H -BN设备的基本物理,并帮助开发相关的基于H -BN的红外光电学。
多光谱和/或极化成像是下一代红外摄像机不可避免的要求。1–9与单色/全球成像相比,狭窄和多光谱的成像可以提供更丰富的对象信息,从而确定对象的绝对温度,并降低相机对大气条件的敏感性。几个相邻光谱通道的组合有助于在复杂的环境中检测到埋藏的物体。5人工对象(例如金属和玻璃)通常具有与天然物体的极化特性不同的。因此,获取极化信息有可能识别某些对象,被认为是提高识别效率并减少错误警报的重要手段。2–4传统的多光谱和极化技术基于单个光谱焦平面阵列,光谱仪和/或极化器的掺入,这些光谱平面阵列,光谱仪和/或极化器通常需要高成本的机械扫描仪器和额外的空间。这些附加
激子特性。例如,它们显示出量子孔限制,大激子结合能,快速辐射重组率以及狭窄和宽带光致发光。1 - 3从结构上讲,这些特性可以通过(i)无机笼的化学成分进行调节; (ii)对其合成中使用的大机阳离子类型的变化; (iii)八面层的数量。大多数效果都集中在控制无机层之间分配的有机部分的性质上,以修改金属的连接和方向 - 卤化物八面体板,因为它发生在Ruddlesdeledlesdeledlesdleper popper结构中。4 - 7以这种方式,可以使用基于溴化物的LP的高度扭曲的晶格,从而诱导自被捕的激子的形成,从而导致间隙内态的白光发射。8 - 11
完整作者列表:Li, Ning;加州大学圣地亚哥分校 Lim, Jasmine;南密西西比大学,聚合物科学与工程学院 Azoulay, Jason;南密西西比大学,聚合物与高性能材料学院 Ng, Tse Nga;加州大学圣地亚哥分校
摘要:低成本、易于集成的硅 (Si) 光子学光电探测器 (PD) 仍然是光子集成电路 (PIC) 的瓶颈,特别是对于 1.8 μ m 以上的波长。多层铂硒化物 (PtSe 2 ) 是一种半金属二维 (2D) 材料,可以在 450°C 以下合成。我们通过在 Si 波导上保形生长直接集成基于 PtSe 2 的 PD。PD 在 1550 nm 波长下工作,最大响应度为 11 mA/W,响应时间低于 8.4 μ s。1.25 至 28 μ m 波长范围内的傅里叶变换红外光谱表明 PtSe 2 适用于远至红外波长范围的 PD。我们通过直接生长集成的 PtSe 2 PD 优于通过标准 2D 层转移制造的 PtSe 2 PD。红外响应性、化学稳定性、低温下选择性和保形生长以及高载流子迁移率的潜力相结合,使 PtSe 2 成为光电子和 PIC 的有吸引力的 2D 材料。关键词:铂硒化物、光电探测器、硅光子学、二维材料、红外 ■ 简介
在 III-V 族胶体量子点 (CQD) 半导体中,与许多光敏材料候选物相比,InSb 有望获得更广泛的红外波长范围。然而,实现必要的尺寸、尺寸分散性和光学特性一直具有挑战性。本文研究了与 InSb CQD 相关的合成挑战,发现锑前体的不受控制的还原会阻碍 CQD 的控制生长。为了克服这个问题,开发了一种将非自燃前体与卤化锌添加剂相结合的合成策略。实验和计算研究表明,卤化锌添加剂会减缓锑前体的还原,从而促进尺寸更均匀的 CQD 的生长。还发现卤化物的选择可以额外控制这种效应的强度。所得 CQD 在 1.26-0.98 eV 的光谱范围内表现出明确的激子跃迁,同时具有强光致发光。通过实施合成后配体交换,实现了胶体稳定油墨,从而能够制造高质量的 CQD 薄膜。首次演示了 InSb CQD 光电探测器,在 1200 nm 处达到 75% 的外部量子效率 (QE),据了解,这是无重金属红外 CQD 设备中报告的最高短波红外 (SWIR) QE。
胶体半导体量子点/石墨烯范德华 (vdW) 异质结利用量子点 (QDs) 增强的光物质相互作用和光谱稳定性以及石墨烯中卓越的电荷迁移率,为增益或外部量子效率高达 10 10 的非制冷红外光电探测器提供了一种有前途的替代方案。在这些 QD/石墨烯范德华异质结构中,QD/石墨烯界面在控制光电过程(包括激子解离、电荷注入和传输)方面起着关键作用。具体而言,范德华界面处的电荷陷阱会增加噪声、降低响应度和响应速度。本文重点介绍了我们在设计范德华异质结界面以实现更高效的电荷转移、从而获得更高的光响应度、D* 和响应速度方面的最新进展。这些结果表明范德华异质结界面工程在 QD/石墨烯光电探测器中的重要性,这可能为低成本、可印刷和灵活的红外探测器和成像系统提供有前途的途径。
摘要 小学对敏捷性的测量往往观察得不够彻底或不够仔细,因此被测量的孩子可能会获得优势,甚至处于劣势。敏捷性是运动体能要素的测试、测量和评估领域之一,它确实需要一点信息技术来帮助克服和解决这些发展中出现的问题,其中之一就是计算机软件和硬件的发展。随着敏捷性测试、测量和评估的存在,希望获得的敏捷性分数能够更加客观,因为它们可以避免测试人员的测量错误。基于这些问题,作者提出了以下问题:1)PTKIN 学生的运动敏捷性规范范围是多少?;2)基于红外光电二极管传感器的 PTKIN 学生数字敏捷性-T [Digilin-T] 评估测试的软件和硬件开发模型是什么?; 3) 基于红外光电二极管传感器的 PTKIN 学生敏捷性-T [Digilin-T] 产品对提高 PTKIN 学生的运动敏捷性有多有效?本研究设计采用研究与开发设计。开发研究中必须遵循的流程要经过几个阶段,包括 (1) 初步需求分析(需求评估)和收集信息;(2) 规划;(3) 产品开发;(4) 小组试验准备;(5) 第一次产品修订;(6) 现场试验;(7) 第二次产品修订;(8) 现场试验;(9) 第三次产品修订;(10) 传播和实施。小组试验中,使用 DigilinT 进行敏捷性测试和测量的能力的敏捷性结果为 60.00%。因为操作方法还不够用户友好,还有许多命令令人困惑。Digilin-T 在大组试验中的使用有所改善。DigilinT 软件和硬件在大组试验中的使用已显示出越来越好的能力。总体来看,操作 DigilinT 的能力水平非常高。受访者组装的难易程度达到 77.10%,打开和操作 DigilinT 的部件达到 93.13%。因此,Digilin-T 作为
半导体量子井(QW)中的subband(ISB)转变引起了很多关注,因为它们的潜在应用到了在THZ的中和远红外光谱区域工作的光电设备中。在过去30年中,这为开发量子级联激光器(QCLS)[1]和红外检测器的开发铺平了道路,要么以光导电模式(例如量子井红外光电探测器(qWIPS))[2]或在诸如potovaltaic mode中的Quantum casccade detectors(QCC)[3] [3] [3] [3]。的确,当建立ISB跃迁与微腔中的Photonic模式之间的强相互作用时,被称为ISB极化子出现的准粒子出现了[4] - [7]。这样的ISB极性不仅对基本物理学很有趣,而且还允许实施具有