该项目的最终产品是一项蒙巴萨县红树林管理计划,已完成并转发给肯尼亚森林服务总监签署和启动。为确保生物多样性的不同方式提供的计划通过绘制了在红树林领域内将进行不同的生计活动,例如养蜂,养殖(养鱼养鱼),环保 - 旅游业和红树林的康复和护理等特定领域的活动,他们可以由社区成员运行和管理各个方面的各个领域。
栖息地结构:红树林的根提供了复杂的结构,为包括鳍鱼在内的各种海洋生物提供了避难和繁殖地。这种栖息地的复杂性增强了生物多样性,并有助于生态系统的整体健康。基于碎屑的食物网络:红树林生态系统基于碎屑,这意味着它们依赖于有机物(碎屑)的营养循环中的分解。鳍鱼通过其喂养活动有助于有机物的细分,释放了可以在沉积物中隔离的碳。蓝色碳:红树林通常被称为“蓝色碳”生态系统,因为它们具有隔离和存储大量碳的能力。红树林鳍鱼通过参与食物网和营养循环过程,间接影响碳动态,从而为此做出了贡献。
抽象的红树林生态系统对沿海稳定性做出了重大贡献,提供了诸如碳质量和风暴保护之类的基本服务。印度尼西亚红树林的康复对于恢复因沿海发展而破坏的生态功能至关重要。本研究旨在比较有机物的比率 - 碳(C),氮(N)和磷(P) - 在巴厘岛贝诺阿湾的自然和修复的红树林土壤中。这项研究是在天然和修复的红树林中的八个地块上进行的,土壤样品使用钻的深度为0至100 cm。使用点火损失(LOI)的土壤有机碳(SOC),总氮(TKN)的FIA方法以及总磷(TP)的比色硫酸盐消化法(TP)进行了有机物分析。结果表明,与天然红树林相比,康复的人树林的总有机碳(1.1±0.5%)较低(1.1±0.5%)和较高的总氮含量(0.07±0.02%)。总磷含量也较低(0.010±0.003%),这可能是由于粘土含量的增加,与土壤中磷结合的粘土含量增加。几个参数与有机物密切相关,包括散装密度,土壤类型,氧化还原电位(ORP),pH和溶解的氧气(DO)(DO),以及红树林的结构,例如树木和幼苗和幼苗密度,茎的,茎的,盖层,盖层,盖层和树枝状况。有机物含量和C:N比率的变化表明,修复的红树林生态系统尚未达到自然生态系统的稳定性。这反映在改变的生物地球化学周期和养分可用性中。因此,需要进行持续的努力,以确保红树林康复过程更全面地恢复。这些发现强调需要在红树林康复中进行有针对性的干预措施,以恢复营养平衡,优化碳储存并增强热带沿海生态系统气候变化的弹性。
萨利姆·阿里·伯德(Salim Ali Bird)博士作为教学大纲的一部分进行实地考察。这次旅行是由Sanquelim-Goa政府艺术,科学和商业学院植物学系助理教授Shaila T. Shetkar女士组织的。在部门的Nisha Kevat博士的指导下;起草了一封信,要求校长Gervasio Mendes博士许可。总共有17名学生参加了实地考察。实地考察的主要目标是向学生展示在红树林中发现的动植物的多样性,以及不同类型的红树林物种,根系和红树林所显示的改编。学生还观察并了解了在红树林中发现的独特的繁殖和发芽类型,称为Vivipary。学生还参观了红树林植物托儿所,在那里他们看到了许多植物幼苗。Shaila T. Shetkar女士对红树林的多样性,红树林识别,生殖,生态系统及其重要性提出了一种解释。学生获得了很多知识,经历了有关红树林分类法,形态学特征的新事物,适应环境,繁殖,生态重要性,生态系统及其生物多样性。
马提尼克岛的红树林占该岛1.85公顷(占总面积的0.1%),非常容易受到当地城市,农业和工业污染物的影响。与温带生态系统不同,有限的指标可用于评估红树林的人为压力。这项研究调查了马提尼克岛上的四个站点,每个站点都承受着不同的人为压力。对大约18厘米深度的红树林沉积物核心的分析显示,马提尼克山脉上的两种主要压力类型:(i)在高度墨西哥山脉湾湾和(ii)在四个研究的红树林站中观察到的农业压力。这种压力的特征是污染,超过调节阈值,在植物检测产物中发现了dieldrin,Total DDT和金属(AS,Cu和Ni)。马提尼克菌的红树林受到不同程度的人为压力,但所有人都会受到有机氯农药的污染。的红树林经历的压力要高得多。在这些情况下,微生物群落表现出不同的反应。在两个不受影响的站点中,微生物生物量和细菌和古细菌的丰度更高,而在fort-de-france的红树林中,通常与受污染环境相关的各种门是更普遍的。微生物群组成中的这些差异导致了65个分类单元的鉴定,包括
摘要。在地上和地下生物量量化地上的红树林时,应用异形方程是与气候变化适应的努力有关的重要步骤。广义的异态方程已用于估计红树林的生物量和碳储存。然而,采用广义的异态方程来估计生物量由于环境,物种和分区的变化而产生不确定性。因此,制定位点特异性异态方程对于准确量化生物量很重要。Siargao岛被认为是最大的红树林持续地形,估计有9,000公顷的红树林。这项研究的目的是使用破坏性方法来制定菲律宾棉兰老岛锡亚尔高岛的红树林的特定地点异态方程。关键词:碳库存,气候变化,增长,多种物种。简介。红树林生态系统已被证明可以提供各种经济和生态服务。It supports local fishery, livelihood to fisherfolk (Primavera 2000; Ingwall 2005; Walters et al 2008; Hogarth 2015) and fish breeding grounds (Brander et al 2012), produces wooden products (Da Silva et al 1993; Brander et al 2012; Abino et al 2014), protects coastal community from storm surge (Lee et al 2014) and sequesters atmospheric carbon.
摘要。红树林生态系统是一个在沿海地区生长的森林地区,距海岸线为200米。红树林是可以通过光合作用的过程吸收CO 2的蓝碳生态系统之一,并以生物量形式存储碳在土壤中。红树林是仅次于珊瑚礁的水域中第二大碳库存商店。红树林生态系统碳库存数据的可用性非常重要,因为蓝色碳生态系统的温室数据清单中的基线非常重要。蓝色碳可以用作通常称为蓝色经济的沿海社区福利的参考,蓝色经济重点是从印度尼西亚的渔业和海洋部门产生经济增长。海洋生态系统也受到气候变化的影响。根据WWF活着的蓝色星球报告2015年的数据,在1970年至2012年期间,海洋人群的数量减少了49%。数据与海洋渔业部门的可持续经济增长密切相关,在这种情况下是红树林生态系统。使用圆图对红树林生态系统进行分析,根据预定的子图对树直径以及对树种的长度和鉴定进行了测量,然后使用异量级方程模型分析了碳库存量。获得的结果是,有80%的红树林栖息地条件仍然非常好,因此它们可以促进总储存的碳储备(蓝色碳)为55.98吨/公顷,这可能是周围社区的生态系统服务,这可以增加西爪哇省Pangandaran地区的蓝色经济。
红树林种植园是热带和亚热带海岸可持续管理以捕获和存储大气碳的基本方法。但是,尚不清楚种植红树林的碳积累潜力与天然红树林的碳积累潜力是否一样多。此外,尚不清楚树种,森林时代和流体动力学条件对碳储存的影响。这项研究调查了广东省Huidong县Kaozhouyang种植的红树林的碳储能和影响因素。植被碳库存是通过研究领域调查收集的社区参数计算得出的,生态系统碳库存是通过植被和沉积物的总和来计算的。结果表明,红树林的种植园显着增加了植被和土壤的碳库存(植被碳库存= 9.9645.06 t c/ha;土壤碳库存= 70.37-110.64 t c/ha),与非蔬菜泥浆相比(63.73 t c/ha)。然而,种植地点的生态系统碳储备仍低于天然avicennia码头(282.86 t c/ha),其显着差异主要反映在土壤碳库存上(p <0.05)。进一步的结果表明,碳积累受森林时代,树种和潮汐水平的影响。植被生物量/碳储备随着森林年龄的增长而逐渐增加(p <0.05),但是对于土壤碳储备而言,差异并不重要,这表明在红树林恢复的早期,碳积累主要集中在植被上。此外,合适的栖息地条件(陆路)和快速增长的物种(sonneratia apetala)对碳的积累更有利用。我们的结果表明,红树林种植园可以在植被和土壤中实现碳储存和隔离,从而通过合适的物种选择和管理来增加碳汇。
红树林是在全球热带和亚热带沿海地区的高含量或咸淡海洋环境的潮汐区中发现的重要生态系统(Romanach等,2018)。这些栖息地支持多样化的红树林物种,例如根茎,布鲁吉埃拉,索纳蒂亚,塞里奥普斯,阿维奇尼亚和木果(Hidayah et al。,2022)。红树林在储存碳延长的持续时间方面非常出色,并且被认为是世界上最高的碳密度之一(Adame等,2020)。最近的研究(Kauffman等,2018; Taillardat,2018)强调,红树林生态系统可以储存三到五倍的碳,而碳是陆地森林的三到五倍,其土壤碳池中存储了重要部分(Zakaria&Sharma,2020)。他们也被公认为是捕获大气碳储备并减轻全球温度持续升高的最有效方法之一(Amir,2018)。尽管覆盖少于1%