I.引言与环境相互作用引起的物质的破坏攻击称为腐蚀[1]。金属恶化是由化学和电化学过程引起的。大气,温度,水溶液的pH值,被动层的存在以及可能发生的任何潜在电化学过程都影响金属对腐蚀的易感性[2,3]。化学反应带来的金属表面不可避免地恶化称为腐蚀。此过程将纯金属转化为化学更稳定的形式,例如硫化物,氧化物,氢氧化物等。在腐蚀性环境下。任何类型的气体,液体或固体都可能构成腐蚀性环境。大多数人认为生锈到处都是[4]。TIN是一种在酸性和碱环境中相互作用的两性金属,但相对不受中性条件的影响[5]。当用钢,铜或镍上的涂层用电化学涂抹时,它会将非常大的表面积暴露于腐蚀性环境中。tin的行为从pH 5-4处的腐蚀转移到酸雨范围内。锡在碱性和酸性环境中也有利[6]。锡在包括电子,涂料和包装在内的广泛领域广泛使用。它用于制造像青铜和锡一样的合金,以及食物罐上的涂层,以防止腐蚀和污染。TIN还用于制造电气组件,例如焊料和锡板,它们可用于制造印刷电路板[7]。
表面活性剂在物体受压时沿晶粒边界或位错向下流动。据称,这种效应的例子发生在多种多样的材料中,从纯金属到各种类型的岩石(在岩石钻头的作用下,或在破碎和研磨过程中)。雷宾德近年来的研究主要针对具有实际意义的分散体的“物理化学力学”,例如粘土浆和水泥浆,为此开发了一系列测量仪器。其他兴趣包括粘合剂、乳液和泡沫。这项工作部分在莫斯科大学胶体化学系进行,雷宾德是该系的教授(据说是一位出色的教师),部分在苏联科学院物理化学研究所分散系统部门进行,他从该部门成立到去世一直担任该部门的负责人。雷宾德院士是一位不知疲倦的胶体科学工作者,他的工作包括担任《胶体杂志》主编。他还是国际表面活性物质大会科学委员会的苏联代表。同时,他的文化兴趣非常广泛——他是一位艺术、文学和音乐鉴赏家,并且精通法语和德语。他的一生中,没有哪篇记录能不提到他的个人魅力、他对年轻同事的鼓励以及他热切关心与访问莫斯科或在会议上遇到的外国同行科学家建立友好的个人联系。
新合金的设计是一个多尺度问题,需要采用整体方法,包括检索相关知识、应用先进的计算方法、进行实验验证和分析结果,而这个过程通常很慢,只有人类专家才能完成。机器学习 (ML) 可以帮助加速这一过程,例如通过使用深度替代模型将结构和化学特征与材料特性联系起来,反之亦然。然而,现有的数据驱动模型通常针对特定的材料目标,在整合领域外知识方面的灵活性有限,无法适应新的、不可预见的挑战。在这里,我们通过利用多个 AI 代理的独特功能来克服这些限制,这些代理在动态环境中自主协作以解决复杂的材料设计任务。所提出的物理感知生成式 AI 平台 AtomAgents 结合了大型语言模型 (LLM) 的智能以及在各个领域具有专业知识的 AI 代理之间的动态协作,包括知识检索、多模态数据集成、基于物理的模拟以及跨模态的综合结果分析,其中包括数值数据和物理模拟结果的图像。多智能体系统的协同努力可以解决复杂的材料设计问题,例如自主设计与纯金属相比性能增强的金属合金。我们的结果能够准确预测合金的关键特性,并强调了固溶体合金化在引导先进金属合金开发方面的关键作用。我们的框架提高了复杂多目标设计任务的效率,并为生物医学材料工程、可再生能源和环境可持续性等领域开辟了新途径。
46181810 洗眼器或洗眼站 安全与个人防护装备 7155000 44122105 活页夹或弹簧夹 桌面用品 7170000 10190000 害虫防治产品 清洁用品 7145000 10191500 杀虫剂或驱虫剂 清洁用品 7145000 10191506 灭鼠剂 清洁用品 7145000 10191507 驱鸟剂 清洁用品 7145000 10191508 白蚁防护罩 清洁用品 7145000 10191509 杀虫剂 清洁用品 7145000 10191510 阿维菌素 清洁用品用品 7145000 10191511 氟虫腈 清洁用品 7145000 10191700 害虫防治设备 清洁用品 7145000 10191701 动物控制陷阱 清洁用品 7145000 10191703 飞虫控制陷阱 清洁用品 7145000 10191704 苍蝇拍 清洁用品 7145000 10191705 套索 清洁用品 7145000 10191706 捕腿陷阱 清洁用品 7145000 10191707 超声波驱虫器 清洁用品 7145000 12141900 非金属和纯金属元素气体 集装箱式气体 7165000 12141901 氯气 Cl 集装箱式气体 7165000 12141902 氢气 H 集装箱式气体 7165000 12141903 氮气 N 集装箱式气体 7165000 12141904 氧气 O 集装箱式气体 7165000 12141905 氟 F 集装箱式气体 7165000 12141906 砷 As 集装箱式气体 7165000 12141907 硼 B 集装箱式气体 7165000 12141908 碳 C 集装箱式气体 7165000 12141909 磷 P 集装箱式气体7165000 12141910 硒 Se 容器化气体 7165000 12141911 硅 Si 容器化气体 7165000 12141912 硫 S 容器化气体 7165000 12141913 碲 Te 容器化气体 7165000 12141914 砹 At 容器化气体 7165000 12141915 溴 Br 容器化气体 7165000 12141916 碘 I 容器化气体 7165000 12142000 稀有气体 容器化气体 7165000 12142001 氙气 Xe 容器化气体 7165000
1. 已经证明能够制造 Mg-Si zintl 化合物模型电极,并使用 XPS、STEM-EDS 和 FTIR/Raman 将 SEI 化学与硅进行比较。Q1 完成 2. 已经建立了实验和协议来了解影响硅阳极安全性的因素,特别关注硅电极上发生的高放热反应。Q1 完成 3. 已经确定了 CO2 对模型电极上 SEI 形成稳定性的影响,但检查了 SEI 性质的变化(XPS、FTIR/Raman 和定量电化学测量)作为 CO2 浓度的函数。Q2 完成 4. 已经使用 XPS、AFM/SSRM、STEM-EDS 和 FTIR/Raman 确定了 zintl 相形成机理及其对包括 Si NPs、Si 晶片、a-Si 薄膜在内的模型系统 SEI 的影响。 Q2 完成 5. 锡硅合金生产是否通过取决于该合金能否以 1g 的量制备,以及该合金的循环寿命是否比纯金属更长。 Q2 完成 6. 已经确定了 LiPAA/Si 界面的化学和界面特性(例如 Si 表面和有机材料处的化学键合性质),以及电荷(OCV,0.8V、0.4V、0.15V、0.05V)和干燥温度(100、125、150、175、200C)的关系。 Q3 7. 已经确定了粘合剂如何通过利用二维或三维模型系统改变 Si NP 尺寸和表面来改变硅电极上的应力/应变,以及电荷状态的关系。 Q3 8. 已经实施了能够比较硅阳极安全响应的协议,作为提高硅电池安全性的指标。 Q3 9. 已经发表了一篇论文,使其他研发小组能够分析硅基阳极上 SEI 的稳定性,从而使开发人员或研究人员能够不断提高硅电池的稳定性(与 Silicon Deep Dive 的共同里程碑)。Q4 10. 已经了解了形成的/可溶的 SEI 物质的性质和数量如何随电解质、粘合剂和 Si 阳极(表面
[J18] Ware LG、Suzuki DH、Cordero ZC †。“定向凝固双晶中弯曲晶界的热力学稳定性和运动学可达性”,材料科学杂志,55:8564–8575 (2020)。[J17] Moustafa AR、Durga A、Lindwall G、Cordero ZC †。“用于设计增材制造功能梯度金属的 Scheil 三元投影 (STeP) 图”,增材制造,32:101008 (2020)。[J16] Poole LL、Gonzales M、French MR、Yarberry WA、Moustafa AR、Cordero ZC †。 “PrintCast A356/316L 复合材料的超高速冲击”,国际冲击工程杂志,136: 103407 (2020)。[J15] Ward AA、Cordero ZC †。“多材料层压板超声波增材制造过程中的结生长和相互扩散”,Scripta Materialia,177: 101-105 (2020)。[J14] Carazzone JR、Bonar MD、Baring HW、Cantu MA、Cordero ZC †。“约束烧结中开裂的原位观察”,美国陶瓷学会杂志,102:602-610 (2019)。[J13] Ward AA、Zhang Y、Cordero ZC †。 “超声波点焊和超声波增材制造中的结生长”,Acta Materialia,158: 393-406 (2018)。[J12] Moustafa AR、Dinwiddie RB、Pawlowski AE、Splitter DA、Shyam A、Cordero ZC †。“介观结构和孔隙率对增材制造金属复合材料热导率的影响”,Additive Manufacturing,22: 223-229 (2018)。[J11] Ware LG、Suzuki DH、Wicker KJ、Cordero ZC †。“定向凝固双晶和三晶中的晶界操控”,Scripta Materialia,152: 98-101 (2018)。[J10] Ward AA、French MR、Leonard DN、Cordero ZC †。 “纳米晶合金超声波焊接过程中的晶粒生长”,材料加工技术杂志,254:373-382 (2018)。[J9] Pawlowski AE*、Cordero ZC* †、French MR、Muth TR、Dinwiddie RB、Carver KR、Shyam A、Elliott AM、Splitter DA。“通过熔体渗透增材制造预制件生产耐损伤金属复合材料”,材料与设计,127:346-351 (2017)。* = 作者贡献相同[J8] Cordero ZC †、Siddel DH、Peter WH、Elliott AM。“通过青铜渗透增强铁质粘合剂喷射 3D 打印部件的强度”,增材制造,15:87-92 (2017)。 [J7] Cordero ZC † 、Dinwiddie RB、Immel D、Dehoff RR。“电子束增材制造过程中烟囱孔的成核和生长”,材料科学杂志,52:3429-3435 (2017)。[J6] Cordero ZC † 、Meyer III HM、Nandwana P、Dehoff RR。“电子束增材制造过程中的粉末床充电”,Acta Materialia,124:437-445 (2017)。[J5] Cordero ZC 、Knight BE、Schuh CA †。“Hall-Petch 效应六十年——纯金属晶粒尺寸强化研究综述”,国际材料评论,61:495-512 (2016)。 [J4] Cordero ZC、Carpenter RR、Schuh CA、Schuster BE†,“超细晶粒钨合金的亚尺度弹道测试”,国际冲击工程杂志,91:1-5 (2016)。[J3] Huskins EL、Cordero ZC、Schuh CA、Schuster BE†。“粉末微柱压缩测试”,材料科学杂志,50:7058-7063 (2015)。