摘要:自组装功能化纳米粒子是多种潜在应用的焦点,特别是用于分子级电子设备。这里,我们对 10 纳米金纳米粒子 (NPs) 进行了自组装实验,这些粒子由一层致密的偶氮苯-联噻吩 (AzBT) 分子功能化,目的是构建具有忆阻特性的光可切换设备。我们制造了由 NP 自组装网络 (NPSAN) 组成的平面纳米设备,这些纳米电极与纳米电极接触,纳米电极之间的电极间隙从 30 到 100 纳米不等。我们展示了这些 AzBT-NPSAN 中光诱导的电导可逆切换,创下了高达 620 的“开/关”电导比记录,平均值约为。 30,85% 的器件的比例超过 10。对纳米颗粒表面化学吸附的分子单层之间的界面结构和动力学进行了分子动力学模拟,并将其与实验结果进行了比较。结果表明,接触界面的性质与分子构象密切相关,对于 AzBT 分子,可以通过明确定义波长的光照射在顺式和反式之间可逆地切换。与通过导电 c-AFM 尖端接触的平面自组装单层上进行的实验相比,分子动力学模拟为实验观察到的两个异构体之间开/关电流比降低提供了微观解释。
植物病毒纳米粒子 (VNP) 成本低廉、可靠且可重复使用,已成为纳米医学(尤其是癌症治疗)中多功能且有前途的平台。这些生物纳米结构具有独特的物理化学特性,包括生物相容性、生物降解性和结构均匀性,使其成为靶向药物输送的理想候选材料。此类纳米粒子能够封装化疗剂并与肿瘤特异性配体功能化,有助于精确输送到癌组织,最大限度地减少脱靶效应并提高治疗效果。此外,植物病毒载体 (VLP) 是引起抗肿瘤免疫力的有吸引力的选择,因为它们无疑是安全、无害的,适合大规模生产和药理学适应。本综述深入探讨了植物病毒纳米粒子的分子结构、其功能修饰以及它们与癌细胞相互作用的机制。此外,它还重点介绍了临床前研究和新兴临床应用,解决了将 VNP 从实验室转化为临床的机遇和挑战。通过探索 VNP 的抗癌潜力,本文旨在强调其在塑造可持续植物源肿瘤纳米技术未来方面的作用。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月29日发布。 https://doi.org/10.1101/2025.01.27.633179 doi:Biorxiv Preprint
所有怀孕的大约10%受胎儿生长限制(FGR)的影响。FGR的主要病因是胎盘不足:胎盘不提供适当量的营养素和氧气。目前尚无FGR或胎盘功能不全的治疗方法。由于胎盘在FGR中的关键作用并为胎儿提供营养,因此为治疗性干预提供了绝佳的目标。使用豚鼠孕妇营养限制模型和重复的胎盘纳米粒子介导的IGF1处理,胎盘IGF1信号传导和养分传输途径的表征以了解FGR和治疗的变化。这项研究阐明了反复的胎盘纳米粒子介导的IGF1治疗导致胎儿生长的信号传导机制。总体而言,这项研究导致FGR和治疗组的胎盘内性别特异性激酶信号传导和营养转运蛋白变化。与我们先前使用此治疗的研究相结合,我们证明了这种治疗方法的基本分子信号传导,并概括了该疗法以实现未来人类翻译的合理性。
必须精确控制微米和纳米粒子的合成以获得所需的形状和组成,因为这些特性会深刻影响它们的应用效果。大量文献旨在通过改进合成程序不断改进这些材料的结构 / 功能。其中,越来越多的化学领域专注于绿色合成方法,以提供更可持续的替代方案,同时保持粒子的生物活性。例如,本研究主题研究了使用印度楝 (neem) 提取物合成的氧化镁 (MgO) 纳米粒子 (Al-Harbi 等人)。制备的 MgO 纳米粒子在热和生物介质下表现出显着的稳定性,同时具有显着的抗氧化、抗炎和抗菌特性。与这种对更环保的工艺和材料的搜索相一致,另一项特色研究回顾了用于组织工程的基于丝素的支架的开发 (Ma 等人)。蚕丝是由超过 20 万种节肢动物生物合成的,其中包括家蚕蛾,它的蚕丝是
2 美国利伯缇大学公共和社区健康系 摘要 纳米技术的最新进展极大地提高了近红外荧光 (NIRF) 探针在癌症成像中的实用性。本文研究了装载 NIR 染料(如吲哚菁绿 (ICG) 和 DiR)的纳米粒子的益处,这些染料以能够穿透深层组织和产生低背景自发荧光而闻名。利用增强的渗透性和保留 (EPR) 效应,这些纳米粒子可以有效靶向肿瘤组织,支持先进的成像技术和精准药物输送。该综述强调了 NIRF 成像在分子诊断中的变革潜力,特别是其在分子水平上区分恶性组织的能力。它还探索了各种 NIRF 染料类型,例如基于菁和 BODIPY 的探针,以及旨在增强成像特异性和治疗益处的多功能药剂。此外,结合包括抗体和小分子在内的靶向机制可提高这些探针的准确性。尽管存在药代动力学和毒性等挑战,纳米粒子探针能够实现实时肿瘤追踪和多模态成像,凸显了其在推进癌症诊断和治疗方面的关键作用。通过促进治疗诊断方法的整合,这些技术为个性化肿瘤治疗和改善患者预后提供了有希望的途径。关键词:近红外荧光 (NIRF) 成像;纳米粒子;癌症诊断;肿瘤靶向;生物相容性;分子成像 1. 简介 1.1. 近红外荧光 (NIRF) 成像概述
本研究调查了使用黑曲霉培养滤液生产氧化锌纳米粒子 (ZnO NPs) 作为一种可持续且环保的方法,将其与碳酸锌溶液结合。使用透射电子显微镜 (TEM)、能量色散 X 射线衍射 (EDX)、扫描电子显微镜 (SEM) 和傅里叶变换红外光谱 (FT-IR) 检查生产的 ZnO 纳米粒子。表征数据验证了高度结晶的 ZnO NPs 的产生,平均尺寸范围为 27 至 40 纳米。研究了 ZnO NPs 在理想温度下对赭曲霉和黑曲霉生长的影响。在剂量分别为 0.25%、0.5% 和 1% 时,黑曲霉和赭曲霉分别导致 56%、81% 和 87% 的真菌生长抑制和 64%、71% 和 86% 的真菌生长抑制。在最高 ZnO NPs 浓度下,观察到最大抑制率。这项研究凸显了黑曲霉作为生物工厂生产 ZnO 纳米颗粒的潜力,这些纳米颗粒在农业和其他领域具有广阔的应用前景。环保的合成方法,加上合成的 ZnO 纳米颗粒的抗真菌特性,为植物病害管理提供了一种可持续且环保的传统杀菌剂替代品。
摘要:本研究计划利用印度楝花提取物生物合成 ZnONPs,以预测其抗菌和抗真菌活性。用紫外-可见光谱 (UV-vis)、X 射线衍射仪 (XRD)、傅里叶变换红外光谱 (FT-IR)、扫描电子显微镜 (SEM) 和 EDAX 对用印度楝花提取物合成的 ZnONPs 进行了表征。本研究还涵盖了光催化降解活性 (UV-vis)。XRD 研究显示了 ZnONPs 的晶体结构。SEM 研究给出了粒子聚集的概念。使用圆盘扩散法,在含有印度楝花提取物的 ZnONPs 的抗菌和抗真菌活性中获得了最大抑制区。关键词:ZnO 纳米粒子 (NPs)、印度楝花提取物 (NFE)、光催化降解活性、抗菌和抗真菌活性
在天然聚合物中,壳聚糖作为化疗药物的药物输送系统引起了人们的特别关注 (7)。壳聚糖源自几丁质的脱乙酰化过程,是一种用途广泛的氨基多糖聚合物,大量存在于节肢动物的外骨骼和真菌的细胞壁中。其独特的属性,包括高载药量、持续循环、多功能性、在肿瘤部位精确释放药物、减轻对健康细胞的毒性、良好的靶向能力、生物相容性、生物降解性、抗菌和抗肿瘤特性以及细胞膜通透性,使其成为一种有吸引力的选择 (8)。化学改性的壳聚糖衍生物已显示出令人鼓舞的结果,可有效输送治疗剂,同时减少副作用。此外,壳聚糖在肿瘤部位的积累可以增强对癌细胞的免疫反应,并阻止肿瘤的生长和扩散。因此,由于具有抗肿瘤和止血活性且毒性极小,壳聚糖被认为是一种安全且生物相容的生物医学应用工具。壳聚糖的活性氨基易于与功能团连接,增强了其作为生物聚合物的多功能性 (7)。
癌症是全球最大的死亡原因。各种药物可治疗各种癌症。人们正在研究用天然来源制成的纳米制剂来治疗多种疾病,包括癌症。手术、化疗、免疫疗法和放疗大多无法治疗癌症。这些药物可能会损害快速分裂的健康组织、结构异常、身体毒性、长期副作用、肿瘤细胞耐药性和精神障碍。研究人员正在开发纳米级药物,使用天然药物如锦葵和姜黄素来降低浓度并提高靶向特异性。纳米粒子的小尺寸和独特性质使其非常有用。它们封装药用成分,提高溶解度、药物释放、细胞吸收和输送。当用配体功能化时,纳米粒子可以更好地识别和结合癌细胞。天然化学物质和纳米技术可以改善药物的可用性、分布和对癌细胞的靶向性,使癌症治疗更有效、更安全。纳米医学利用纳米粒子治疗癌症和恶性细胞,由于纳米药物比目前市售的抗癌药物更有效、副作用更少,因此发展迅速。这篇综述文章介绍了基于纳米技术的天然化学物质和用于癌症治疗的药物输送方法。本文讨论了纳米粒子的利弊以及天然化学物质的抗癌吸引力。