摘要:癌症仍然是一个复杂的医学挑战,也是全球主要的死亡原因之一。纳米药物已被提议作为应对这些复杂疾病的创新平台,其中几种治疗策略的结合可能会提高治疗成功率。在这些纳米药物中,纳米粒子介导的核酸递送已被提出作为调节基因表达的关键工具,无论是靶向基因沉默、干扰 RNA 机制还是基因编辑。这些新型递送系统强烈依赖于纳米粒子,特别是金纳米粒子 (AuNPs) 为有效的递送系统铺平了道路,因为可以微调它们的尺寸、形状和表面特性,再加上易于用不同的生物分子进行功能化。在此,我们将讨论调节致癌基因和肿瘤抑制基因表达的不同分子工具,并讨论 AuNP 功能化在体外和体内模型中用于核酸递送的最新进展。此外,我们将重点介绍这些基于球形 AuNP 的结合物在基因传递方面的临床应用、当前的挑战以及纳米医学的未来前景。
尽管近年来乳腺癌的发病率有所下降(1990 年至 2013 年间下降了 37%)1,2 ,但它仍然是女性死亡的第二大原因。根据癌症统计数据 3 ,仅在美国,2015 年就登记了 231,840 例女性乳腺癌新病例,其中 40,290 名患者死亡。目前可用的治疗方案包括手术切除、辅助放射治疗、辅助化疗和激素治疗。化疗涉及应用小分子药物,例如烷化剂、抗代谢物、蒽环类药物和拓扑异构酶抑制剂。随着化疗药物的长期暴露,癌细胞对单一药物或一类药物产生耐药性,并对几种结构和功能上不相关的抗肿瘤药物 4 表现出交叉耐药表型 5 。这种获得性耐药现象,称为多药耐药性或MDR,是迄今为止癌症治疗面临的一大挑战。
必须精确控制微米和纳米粒子的合成以获得所需的形状和组成,因为这些特性会深刻影响它们的应用效果。大量文献旨在通过改进合成程序不断改进这些材料的结构 / 功能。其中,越来越多的化学领域专注于绿色合成方法,以提供更可持续的替代方案,同时保持粒子的生物活性。例如,本研究主题研究了使用印度楝 (neem) 提取物合成的氧化镁 (MgO) 纳米粒子 (Al-Harbi 等人)。制备的 MgO 纳米粒子在热和生物介质下表现出显着的稳定性,同时具有显着的抗氧化、抗炎和抗菌特性。与这种对更环保的工艺和材料的搜索相一致,另一项特色研究回顾了用于组织工程的基于丝素的支架的开发 (Ma 等人)。蚕丝是由超过 20 万种节肢动物生物合成的,其中包括家蚕蛾,它的蚕丝是
EVŌQ Nano 联合创始人兼首席技术官 William Niedermeyer 是一位终身科学家,拥有应用物理学背景,他重视专注研究。他领导了私营和企业领域的多个仪器离子物理学研究和开发项目,将他的物理学背景应用于多项突破性技术。当 9/11 事件中断他在犹他州大学的高能物理学博士学位研究时,Niedermeyer 转向了蓬勃发展的纳米技术领域,对其在医学、可再生能源和微电子领域的潜在应用很感兴趣。
全球面临着巨大的结核病 (TB) 负担,由于患者不坚持治疗,且耐药菌株以惊人的速度传播,TB 很难根除。需要新的方法来改善诊断和治疗。金属纳米粒子 (MNP) 已显示出作为传感器探针和联合疗法的潜力,联合疗法将 MNP 与抗分枝杆菌药物结合起来,以开发新的治疗和治疗诊断方法。为了加强结核病纳米药物临床应用的理论基础,本综述重点介绍了治疗相关的 MNP 的特性和有效性。它还详细阐述了它们的抗分枝杆菌机制。本综述旨在分析有关该主题的文献,找出重要的实证结果,并确定知识空白,为未来的研究工作和技术转化提供基础。当前数据表明,MNP 是有效诊断和治疗的潜在系统,尽管需要额外的临床前和临床研究才能将这些技术引入临床。
目的:准确检测结直肠癌肝转移 (CLM) 极其重要,CLM 是结直肠癌相关死亡的主要原因。具有高软组织分辨率的 1 H MRI 在诊断肝脏病变中起着关键作用;然而,由于灵敏度有限,通过 1 H MRI 精确检测 CLM 是一项巨大的挑战。尽管造影剂可以提高灵敏度,但由于其半衰期短,需要重复注射才能监测 CLM 的变化。在此,我们合成了 c-Met 靶向肽功能化的全氟-15-冠-5-醚纳米粒子 (AH111972-PFCE NPs),用于高灵敏度和小 CLM 的早期诊断。方法:对 AH111972-PFCE NPs 的尺寸、形态和最佳性能进行了表征。通过体外实验和小鼠皮下肿瘤模型中的体内19F MRI研究验证了AH111972-PFCE NPs的c-Met特异性。在小鼠肝转移模型中评估了AH111972-PFCE NPs的分子影像实用性和肿瘤内长期滞留性。通过毒性研究评估了AH111972-PFCE NPs的生物相容性。结果:AH111972-PFCE NPs粒径为89.3±17.8 nm,形貌规则。AH111972-PFCE NPs表现出较高的特异性、较强的c-Met靶向能力以及在1H MRI中对CLMs,尤其是小的或边界不清的融合转移瘤的精确检测能力。此外,AH111972-PFCE NPs可在转移性肝肿瘤中超长滞留至少7天,有利于实施持续疗效监测。NPs副作用小,生物相容性好,主要通过脾脏和肝脏清除。结论:AH111972-PFCE NPs的c-Met靶向性和超长肿瘤滞留性将有助于增加转移部位治疗药物的蓄积,为CLM的诊断和进一步的c-Met靶向治疗整合奠定基础。这项工作为未来在CLM患者的临床应用提供了一个有前景的纳米平台。关键词:c-Met靶向,全氟碳,19F MRI,结直肠肝转移,精准检测
摘要 纳米技术为将化疗药物精确递送至癌细胞提供了有效的方法,从而提高了疗效并减少了脱靶副作用。纳米级化疗药物的靶向递送通过两种不同的方法实现,即利用渗漏的肿瘤血管(EPR效应)和用各种肿瘤归巢肽、适体、寡核苷酸和单克隆抗体(mAb)对纳米粒子(NPs)进行表面改性。由于具有更高的结合亲和力和特异性,mAb 在检测选择性癌症生物标志物以及治疗各种类型的癌症方面受到了广泛关注。抗体偶联纳米粒子(ACNPs)是一种有效的靶向治疗方法,可高效地将化疗药物特异性地递送到目标癌细胞。ACNPs 结合了 NPs 和 mAb 的优点,可在肿瘤部位提供高药物负荷,具有更好的选择性和递送效率。 NP 表面的 mAb 识别靶细胞上表达的特定受体,并以受控方式释放化疗药物。适当设计和合成的 ACNP 对充分实现其治疗效益至关重要。在血流中,ACNP 会立即与生物分子相互作用,并形成蛋白质冠。蛋白质冠的形成会触发免疫反应并影响纳米制剂的靶向能力。在这篇综述中,我们提供了最近的研究结果,重点介绍了几种抗体结合方法,例如吸附、共价结合和生物素-亲和素相互作用。本综述还概述了蛋白质冠的多种作用以及 ACNP 在癌症治疗中的治疗诊断应用。
化学系 波普学院(自治学院),Sawyerpuram 628 251,泰米尔纳德邦 附属于 MS 大学,Tirunelveli - 627 012,泰米尔纳德邦,印度 摘要 - 使用八角茴香提取物通过绿色合成方法合成了一种有效的氧化锰纳米粒子。 通过紫外可见光、傅立叶变换红外光谱、原子力显微镜和扫描电镜研究对制备的纳米粒子进行了表征。 氧化锰纳米粒子的紫外可见光光谱显示最大吸收在 250 nm 和 300 nm 左右。 这是因为 n → π* 和 π → π* 跃迁。 氧化锰的 FT-IR 光谱显示 Mn–O 振动峰以 580 cm -1 为中心,而另一个以 1627 cm -1 为中心的明显峰是 Mn 原子上的 O–H 伸缩振动。利用AFM和SEM表征表面形貌。以亚甲蓝作为有机污染物,评价了氧化锰纳米粒子对染料降解的光催化活性。关键词:氧化锰,紫外-可见光,SEM,光催化活性,亚甲蓝1.引言绿色合成是一种环境友好的方法,它代表了化学领域的一种不同思维方式,旨在消除有毒废物,降低能耗,使用水、乙醇、乙酸乙酯等生态溶剂。纳米材料作为新型抗菌剂出现,具有高表面积与体积比和独特的物理化学性质[1]。氧化锰纳米粒子广泛用于污染物传感、药物输送、数据存储、催化和生物医学成像。随着人们对环境污染的关注度日益提高,纳米粒子的绿色合成变得非常重要。基于绿色化学的纳米粒子合成由于其生态友好的性质而受到青睐。氧化锰纳米粒子在催化、离子筛、充电电池、化学传感装置、微电子和光电子等多个领域有着广泛的应用,引起了人们的广泛关注。[2-9] 本研究采用绿色方法制备了氧化锰纳米粒子,并通过紫外-可见光、傅里叶变换红外和扫描电子显微镜分析方法进行了表征。合成的氧化锰纳米粒子在可见光区对染料降解表现出光催化活性。 2.实验 2.1 氧化锰纳米粒子的制备 在典型的反应过程中,将 3.2 g 硫酸锰和 1.0 g 聚乙二醇溶解在 50 mL 水中。然后加热溶液直至溶解。加入6.56g乙酸钠和50mL新鲜制备的八角茴香提取物(Illicium verum)溶液,室温下剧烈搅拌3小时,过滤所得溶液,洗涤、分离纳米颗粒,在90℃真空干燥箱中干燥12小时,保存待进一步研究。2.2.八角茴香提取物的制备 取约10g新鲜八角茴香,用蒸馏水彻底清洗以除去灰尘颗粒。将洗净的八角茴香切成小块,放入带水冷凝器的圆底烧瓶中,在100mL蒸馏水中煮沸1小时。用Whatman No.41过滤提取物,得到纯提取物。 2.3. 光催化活性 ` 在本研究中,使用著名染料亚甲蓝作为探针分子来评估合成纳米粒子在直射阳光下的光催化活性。选择亚甲蓝在665nm处的特征光吸收峰来监测光催化降解过程。实验按照以下步骤进行。 2.4. 步骤 ` 每次测量时,将0.05g样品加入100mL浓度为0.0031g/L的亚甲蓝水溶液中。将悬浮液在黑暗中搅拌约一小时,以确保亚甲蓝在纳米颗粒表面的吸附和解吸平衡建立。然后将溶液暴露在阳光下。在平衡后以10分钟的恒定时间间隔提取3毫升悬浮液,然后离心以将纳米颗粒与上清液分离。用JASCO V650 UV-Vis分光光度计测量上清液的紫外-可见吸收光谱。使用以下公式计算染料降解的百分比:降解百分比=
在本研究中,我们报告了表面改性活性炭 (AC) 的合成。活性炭的表面已使用银纳米粒子进行改性。合成过程简单、成本有效且环境友好。改性 AC 粉末已使用 X 射线衍射、扫描电子显微镜和表面积和孔径测量进行了表征。通过使用镁离子基聚合物电解质制造 EDLC 的对称配置,测试了所制备材料的电化学性能。使用循环伏安法、电化学阻抗谱和恒电流充放电技术对电池进行了测试。含有 3 wt% 银的 AC 呈现出最佳效果,比电容约为 398 F g − 1 能量密度,功率密度为 55 Wh kg − 1 和 2.4 kW kg − 1,使其成为超级电容器应用的有趣材料。
纳米技术是科学、工程和技术的一个分支,涉及原子或分子尺度上小于 100 纳米物质的尺寸和公差。纳米粒子由于其独特的尺寸依赖性而具有广泛的应用(Lu 等人,2012 年)。磁性纳米粒子因其广泛的应用而备受关注,例如蛋白质和酶的固定、生物分离、免疫测定、药物输送和生物传感器。纳米粒子由于尺寸小而具有较高的表面积与体积比,这赋予了纳米粒子非常独特的特性(Sagadevan 等人,2015 年)。纳米粒子独特的化学和物理性质使其非常适合设计新的和改进的传感设备;尤其是电化学传感器和生物传感器(Wang 等人,2016 年)。纳米粒子的重要功能包括固定生物分子、催化电化学反应、增强电极表面与蛋白质之间的电子转移、标记生物分子甚至作为反应物 (Luo et al. 2006))。一般来说,金属氧化物纳米粒子是无机的。Fe、Ni、Co、Mn 和 Zn 等各种纳米粒子是广泛接受的磁性材料,可用于磁传感器、记录设备、电信、磁性流体和微波吸收器等广泛应用 (Zhu et al. 2014;Poonguzhali et al. 2015)。在各种金属氧化物纳米粒子中,二氧化锰是一种重要的 P 型过渡金属氧化物