随着可持续发展和可再生能源技术目标的制定,多源系统领域取得了重大进展。多源系统通常被称为分布式发电系统和混合储能系统,它带来了许多机遇和技术挑战。多源系统中高效能源管理的重要性日益增加。随着电动汽车行业的发展,人们更加关注能源管理方法的研究和创新。鉴于此,仍然越来越需要开发更好的模型和能源管理算法来优化储能系统的能源性能,延长其生命周期。在国际能源署 (IEA) 净零排放情景中,能源效率起着关键作用。理想情况下,世界必须提高三分之一的能源效率。为了实现这一雄心勃勃的目标,必须大力提高能源效率,尤其是在建筑、交通和工业领域。在过去几年中,随着传感器和智能电表等联网设备的部署,我们实现了更好的测量,从而增强了控制。到 2030 年,市场需要超过 500 GW 的需求响应才能实现此情景下设定的目标。实现这些措施所需的技术包括高效热水系统、电动汽车智能充电和建筑能源管理系统。这些系统只需安装由能源管理算法控制的高效技术,即可节省 20-30% 的能源 [ 1 ]。因此,从已经制定的政策和情景中可以清楚地看出,我们需要详细研究并有效改进现有技术。大多数支持这些技术的系统已经开发出来,但仍有改进的空间。此外,对高效算法的需求也日益增加,以利用现有的资源。为了实现净零情景中的目标,研究人员需要关注当下到底需要什么。COVID-19 大流行大大减缓了这些技术的发展速度,需要再次加快步伐。本期特刊旨在为研究人员提供一个平台,让他们能够在 COVID-19 疫情期间研究和发表多源系统能源管理领域的研究成果。最近对储能系统老化评估的研究表明,在这一领域还有很多工作要做。[ 2 ] 提出了超级电容器老化特性和建模,其中考虑了电流纹波率、温度和循环因子的影响。在参考文献 [ 3 ] 中,作者针对的是类似的问题,但直接考虑了直流电流纹波的影响,而不是找到纹波率;这两项研究都考虑了超级电容器的电阻和电容随温度、电流纹波和充电状态的变化。[4] 中的电池老化特性遵循类似的原理,并将温度和直流电流纹波率的影响视为电池的热和电气约束。这些模型可用于预测由电气和热约束引起的电池退化程度。锂离子电池开路电压和充电状态特性的估计
摘要:本文介绍了一种用于光伏系统的三相交错升压转换器的突破性设计,利用并联的传统升压转换器来降低输入电流和输出电压纹波,同时提高动态性能。这项研究的一个显着特点是将锂离子电池直接连接到直流链路,从而无需额外的充电电路,这与传统方法不同。此外,MPPT 控制器和闭环模糊控制器与电流控制模式的组合可确保为所有三个相位生成准确的开关信号。精心调整的系统在输出电压中表现出非常低的纹波含量,超过了计算值,并表现出卓越的动态性能。研究延伸到对损耗的全面分析,包括电感器铜损和半导体传导损耗。在所有情况下,转换器的效率都超过 93%,凸显了其作为光伏系统有效解决方案的强大性能。
摘要:本文介绍了一种用于检测脑电图 (EEG) 信号的模拟前端 (AFE)。AFE 由四个部分组成,即斩波稳定放大器、纹波抑制电路、基于 RRAM 的低通 FIR 滤波器和 8 位 SAR ADC。这是首次在 EEG AFE 中引入基于 RRAM 的低通 FIR 滤波器,其中利用 RRAM 的生物可信特性高效分析模拟域中的信号。前置放大器采用对称 OTA 结构,在满足增益要求的同时降低了功耗。纹波抑制电路大大改善了噪声特性和失调电压。基于 RRAM 的低通滤波器实现了 40 Hz 的截止频率,适用于 EEG 信号的分析。SAR ADC 采用分段电容器结构,有效降低了电容器开关功耗。芯片原型采用 40 nm CMOS 工艺设计。整体功耗约为13µW,实现超低功耗运行。
摘要:在这项工作中,Ti的直接照射:蓝宝石(100 fs)飞秒激光束在第三次谐波(266 nm)(266 nm),中等重复率(50 Hz和1000 Hz),用于在聚恒定(PS)薄膜上创建正常的周期性纳米结构。在一个斑点区的情况下,获得了50 Hz以及1 kHz的典型低空间频率LIPS(LSFL),并使用线扫描辐照。激光束的功能,重复速率,脉冲数(或辐照时间)和扫描速度,以导致各种周期性纳米结构的形成。发现PS的表面形态在很大的能量(1至20 µ j/pulse)下强烈取决于大量脉冲(10 3至10 7脉冲)的积累。此外,在激光辐照过程中从室温加热至97℃,修饰了纹波的形态,尤其是它们的振幅从12 nm(RT)提高到20 nm。扫描电子显微镜和原子力显微镜用于成像表面结构的形态特征。以选定的速度进行激光梁扫描,可以在聚合物膜上生成良好的纹波,并在大面积上产生均匀性。
CD4017BC 和 CD4022BC 的配置允许中速操作并确保无风险计数序列。10/8 解码输出通常处于逻辑“0”状态,仅在其各自的时隙进入逻辑“1”状态。每个解码输出保持高电平 1 个完整时钟周期。进位输出信号每 10/8 个时钟输入周期完成一个完整周期,并用作任何后续阶段的纹波进位信号。
输出DC电压24V额定电流4.2A电流范围0〜4.2A额定功率100.8W纹波和噪声(最大)150MVP-P-P电压调整。范围24〜29V电压公差±1.0%线调节±1.0%负载调节±1.0%设置,上升时间2700ms,80ms/230VAC 2700ms,80ms/115vac在满载时持有时间(typ。)50ms/230VAC 18ms/115VAC满载
重量 IP54 - 3.9Kg / IP66 - 5.8Kg IP54 - 6.1Kg / IP66 - 8.5Kg IP54 - 6.7Kg 工作温度 -35 o C 至 +55 o C -35 o C 至 +55 o C -35 o C 至 +55 o C 可选型号 12V/40A, 24V/40A 36V/22A, 48V/20A 12V/80A, 24V/80A 36V/53A, 48V/40A 12V/105A, 24V/105A 36V/80A, 48V/60A 充电电压 14.4V, 28.8V, 43.2V, 57.6V 14.4V, 28.8V, 43.2V, 57.6V 14.4V, 28.8V, 43.2V, 57.6V 建议电池容量 20Ah-500Ah 30Ah-1000Ah 40Ah-1200Ah 输入交流电压 195-264VAC, 47-64Hz 195-264VAC, 47-64Hz 195-264VAC, 47-64Hz 纹波 <1% <1% <1% 可选充电程序 所有铅和锂电池 所有铅和锂电池 所有铅和锂电池 输出电压变化 ±0.5% ±0.5% ±0.5% 电流纹波 ±2% ±2% ±2% IP 等级 IP54 / IP66 IP54 / IP66 IP54 安全等级 I 级 I 级 I 级 电源线 3x1.5mm 2 橡胶线, 1.5m 3x1.5mm 2 橡胶线, 1.5m 3x1.5mm 2 橡胶电缆,1.5m 电池电缆 2x10mm 2 1.5m 2x16mm 2 1.5m 2x25mm 2 1.5m 其它 反极性保护,防短路 反极性保护,防短路 反极性保护,防短路 外壳 铝 铝 铝 CAN 总线 可选 可选 可选
摘要 --- 参数设计对于确保功率转换器的整体性能令人满意具有重要意义。通常,功率转换器的电路参数设计包括两个过程:分析和推导过程和优化过程。现有的参数设计方法包括两种类型:传统方法、计算机辅助优化(CAO)方法。在传统方法中,需要严重依赖人。即使新兴的 CAO 方法使优化过程自动化,它们仍然需要手动的分析和推导过程。为了减轻对人的依赖以实现高精度和易于实施,本文提出了一种基于人工智能的设计(AI-D)方法用于功率转换器的参数设计。在提出的 AI-D 方法中,为了实现分析和推导过程的自动化,采用仿真工具和批量归一化神经网络(BN-NN)为优化目标和设计约束构建数据驱动模型。此外,为了实现优化过程的自动化,使用遗传算法来搜索最佳设计结果。所提出的 AI-D 方法在电动汽车 48 V 至 12 V 附件负载电源系统中同步 Buck 转换器的电路参数设计中得到了验证。给出了效率最优的同步 Buck 转换器的设计案例,该转换器在体积、电压纹波和电流纹波方面均有约束。最后,通过硬件实验验证了所提出的 AI-D 方法的可行性和准确性。索引术语 - 功率转换器、参数设计、人工智能、进化算法、神经网络。