本文介绍了一种新型金属基复合材料 (MMC),其以 Mg 基体为增强体,并用天然填料(Didymosphenia geminata 藻壳,具有独特的硅质壳)增强。采用脉冲等离子烧结 (PPS) 制造 Mg 基复合材料,其中陶瓷填料的体积百分比分别为 1%、5% 和 10%。作为参考,烧结了纯 Mg。结果表明,向 Mg 基体中添加 1% 体积百分比的 Didymosphenia geminata 藻壳可通过支持钝化反应来提高其耐腐蚀性,并且不会影响 L929 成纤维细胞的形态。添加 5% 体积百分比的填料不会引起细胞毒性作用,但它会支持微电化学反应,从而导致更高的腐蚀速率。当填料含量超过 5 vol.% 时,会引起严重的微电偶腐蚀,并且由于含有 10 和 15 vol.% 硅藻的复合材料的微电偶效应更强,会增加细胞毒性。接触角测量的结果显示了所研究材料的亲水特性,随着陶瓷增强体的增加,数值略有增加。Didymosphenia geminata 壳的添加会导致热弹性能的变化,例如热膨胀系数 (CTE) 和热导率 (λ) 的平均表观值。硅质增强体的添加导致 CTE 在整个温度范围内线性下降和热导率降低。随着 Didymosphenia geminata 壳的添加量增加,强度增加,压缩应变降低。所有复合材料的显微硬度都得到了增加。
摘要 众所周知,晶粒细化剂可以调整微观结构并提高增材制造 (AM) 钛合金的机械性能。然而,Ni 添加对 AM 制造的 Ti-6Al-4V 合金的内在机制尚不十分清楚。这限制了它的工业应用。本研究系统地研究了 Ni 添加剂对激光辅助增材制造 (LAAM) 制造的 Ti-6Al-4V 合金的影响。结果表明,Ni 添加对 LAAM 制造的 Ti-6Al-4V 合金的微观结构演变产生三个关键影响。(a) Ni 添加剂显着细化了前 β 晶粒,这是由于凝固范围扩大所致。随着 Ni 添加量从 0 增加到 2.5 wt。%,原β晶粒的长轴长度和长宽比分别从1500 µ m和7减小到97.7 µ m和1.46。(b) Ni添加剂可以明显诱导球状α相的形成,这归因于β相和α相之间增强的浓度梯度。根据终止传质理论,这是球化驱动力。随着Ni添加量从0增加到2.5 wt,α板条的长宽比从4.14降低到2.79。%(c) Ni是一种众所周知的β稳定剂,它可以显著增加β相的体积分数。室温拉伸结果表明,随着 Ni 含量的增加,机械强度增加,伸长率几乎呈线性下降。使用改进的数学模型定量分析了强化机制。从结果可以看出,α 板条相和固溶体对本研究中 LAAM 构建的 Ti-6Al-4V-x Ni 合金的总屈服强度贡献最大。此外,随着 Ni 含量的增加,伸长率降低是由于大量固溶体 Ni 原子导致 β 相的变形能力下降。这些发现可以加速增材制造钛合金的开发。
目的:研究口服硫辛酸 (ALA) 补充剂对 2 型糖尿病 (T2D) 患者心脏代谢危险因素的剂量依赖性影响。设计:我们遵循 Cochrane 干预措施系统评价手册和推荐分级、评估、开发和评估手册中概述的说明进行系统评价。研究方案已在 PROSPERO (CRD42021260587) 中注册。方法:我们在 PubMed、Scopus 和 Web of Science 中搜索了截至 2021 年 5 月的口服 ALA 补充剂对 2 型糖尿病成人患者的试验。主要结果是糖化血红蛋白 (HbA1c)、体重减轻和低密度脂蛋白胆固醇 (LDL-C)。次要结果包括空腹血糖 (FPG)、甘油三酯 (TG)、C 反应蛋白 (CRP) 和血压。我们进行了随机效应剂量反应荟萃分析,以计算每天口服 500 毫克 ALA 补充剂的平均差异 (MD) 和 95% CI。我们使用受限三次样条进行了非线性剂量反应荟萃分析。结果:我们纳入了 16 项试验,涉及 1035 名患者。每天口服 ALA 补充剂每增加 500 毫克,HbA1c、体重、CRP、FPG 和 TG 均显著降低。剂量反应荟萃分析表明,每天补充超过 600 毫克 ALA 时,体重呈线性下降(MD 600 毫克/天:- 0.30 公斤,95% CI:- 0.04,- 0.57)。HbA1c 呈现相对 J 形效应(MD:- 0.32%,95% CI:- 0.45,- 0.18)。每日 ALA 摄入量达到 600 毫克时,FPG 和 LDL-C 水平下降。所有结果的点估计值均低于最小临床重要差异阈值。结论:尽管口服 ALA 补充剂对 2 型糖尿病患者的心脏代谢风险因素有显著改善,但其影响在临床上并不重要。
电子产品。 [1–3] 然而,电子设备数量的迅速增加引发了严重的环境问题,因为通过填埋不当处理科技废物、使用有毒物质以及大量的碳足迹对自然构成了巨大威胁。 [4] 由于回收利用往往不切实际且成本高昂,如果能够缩小与传统电子产品的性能差距,新兴的可降解电子产品将提供一种可持续的解决方案。 [5] 对于可拉伸系统,这对所用材料的机械性能提出了严格的要求。包括传感器在内的保形电子皮肤完全是柔软的,但为了达到高度的不可感知性,需要可拉伸的设备。 拉伸性使其对使用过程中的表面和变形的适应性更高。 [6] 此类设备的可生物降解版本需要开发与其保形性和可降解性相匹配的电源。 [7] 据报道,完全可降解超级电容器能够为手表供电,且具有高面积电容,但它们的低能量密度和负载下工作电压线性下降使得它们不适合耗电的电子应用。 [8,9] 另一方面,可拉伸电池提供稳定的工作电压和更长运行时间所需的高能量密度。 到目前为止,这些设备主要利用不可降解和有毒材料的优势。 [10–12] 虽然完全可降解软电池在功率输出方面有所改进,但它们还无法与不可降解设计相媲美,而且它们的可拉伸实现仍处于起步阶段。 [13–15] 刚性可降解电源通常利用镁、铁或钼等金属的高理论能量密度,但实现相同的可拉伸版本仍然是一个挑战。 [16,17] 此类金属通常几乎不表现出超出一定程度的不可逆延展性的固有拉伸性。这可以通过各种后处理方法(例如薄膜屈曲、刚性岛设计)来解决,但是,这些方法需要简单易行,并且不能过度损害性能。[18] 预拉伸基板上的电极膜屈曲虽然提供了可逆拉伸性,但迄今为止仅报道了不可降解电极材料,如聚二甲基硅氧烷-碳纳米管复合材料或金属化聚对苯二甲酸乙二醇酯 (PET) 箔。[19,20] 此类
基于上述原因,并且由于 COVID-19 病例发病率尚未达到峰值,预计汽油和乙醇消费量的大幅下降将持续数月,并且可能要到 2020 年底才能恢复到去年同期的水平。Taheripour 和 Mintert (2020) 在最近的一篇论文中恰当地捕捉到了当前汽油和乙醇需求的下滑,并提出了一条合理的复苏路径。1他们考虑了 COVID-19 对汽油和乙醇消费可能产生影响的三种情景。中等影响情景最接近实际情况,因为它假设 4 月份减少 50%。关于 2020 年剩余时间的走势,他们指出,“在每种情景中,对于 5 月、6 月和 7 月,假设影响每月减少 10%……为考虑7月以后经济活动的衰退,在低、中、高影响情景下,减产率线性下降,12月的减产率分别达到约5%、7.5%和10%。 ” 在我们的分析中,Taheripour和Mintert在中等影响情景下假设的减产百分比被应用于过去几年4月至12月的平均月乙醇消费水平。此外,还遵循了类似的路径,得出美国乙醇年度出口量大约相当于15%的减幅,因为目的地市场也受到了COVID-19、经济衰退和低汽油价格的综合影响。在这种情况下,预计2020年乙醇产量将下降约30亿加仑,才能实现供需平衡——减产近20%。此外,COVID-19不仅降低了乙醇产量,也降低了乙醇价格。作为美国乙醇定价的中心参考点,芝加哥的现货价格已从 2019 年底的 1.40 美元/加仑跌至 4 月初的 0.85 美元/加仑。随着乙醇库存上升至创纪录水平,且预期消费将缓慢恢复,未来几个月乙醇价格可能会继续受到抑制。为了估计对乙醇价格的预期影响,我们使用了一个回归模型,其中芝加哥乙醇价格是库存使用比、玉米期货价格和代表汽油相对价格的变量的函数。该回归模型使用自 2010 年 3 月以来的月度数据开发,调整后的 R 平方统计量为 0.91。乙醇产量的减少已经导致玉米价格大幅下跌,因为玉米是乙醇生产的主要原料。仅自 3 月初以来,近期玉米期货价格就下跌了 17%。此外,价格