1981 年 5 月,费曼在一次会议演讲中提出了“用计算机模拟物理”的想法。在那次演讲中,他提出了使用量子计算机模拟传统计算机难以模拟的量子系统的想法。他的演讲发表在 [ 1 ] 上,被认为是量子计算研究领域的一次大爆炸。从那时起,学术界和企业界都为开发有用的量子计算机付出了很多努力。尽管有许多利益相关者加入了这项任务,但这条路还远未完成。最大的问题之一是制造问题:创建和保存量子位。量子位相当于量子环境中的比特,但它们不像传统比特那么容易保存。它们必须在非常低的温度下储存以保持一致性——任何基于不相干量子位的计算都会导致错误。尽管这项任务成本高昂,但还是有少数公司能够构建出可以运行的量子计算机。受量子力学规则的限制,量子计算模型仅通过幺正运算来操纵量子比特,幺正运算是线性算子的一个子集。投影是线性算子的另一个子集,它允许读取量子比特的内容,尽管不可避免地会改变它们的状态。因此,每个量子算法都必须开发为一系列幺正算子和投影。诸如 Shor 的因式分解 [ 2 ] 和
第一天。量子计算简介、量子计算的历史。第二天。应用与用例、量子计算与经典计算、量子计划与资源。第三天。叠加与纠缠原理、量子比特技术。第四天。接触电路组合器、量子信息科学套件 (QISKIT) 和量子模拟器 (QSIM) 工具包。第五天。量子力学与线性代数、线性算子和矩阵、泡利矩阵、内积、张量积。第六天。Python 编程、功能和安装简介。第七天。单/多量子比特门、量子电路、贝尔态。第八天。量子隐形传态、超密集编码。第九天。量子算法:量子傅里叶变换、Grover 算法。第十天。量子傅里叶变换和 Grover 算法的实现。
边界算子是一个线性算子,它作用于一组高维二元点(单纯形),并将它们映射到它们的边界上。这种边界图是许多应用中的关键组件之一,包括微分方程、机器学习、计算几何、机器视觉和控制系统。我们考虑在量子计算机上表示完整边界算子的问题。我们首先证明边界算子具有特殊结构,形式为费米子产生和湮灭算子的完全和。然后,我们利用这些算子成对反对换的事实来生成一个 O(n) 深度电路,该电路精确实现边界算子,而没有任何 Trotterization 或泰勒级数近似误差。错误越少,获得所需精度所需的拍摄次数就越多。
复变量函数。简要回顾荣誉课程大纲所包含的主题:解析函数、柯西-黎曼方程、复平面积分、柯西定理、柯西积分公式。刘维尔定理。莫雷特拉定理。泰勒和罗朗展开式的证明。奇点及其分类。分支点和分支割线。黎曼单。留数定理。留数定理在定积分求值和无穷级数求和中的应用。(11 讲)线性向量空间、子空间、基和维数、向量的线性独立性和正交性、格拉姆-施密特正交化程序。线性算子。矩阵表示。矩阵代数。特殊矩阵。矩阵的秩。初等变换。初等矩阵。等价矩阵。线性方程的解。线性变换。基的变换。矩阵的特征值和特征向量。凯莱-哈密尔顿定理。矩阵的对角化。双线性和二次型。主轴变换。(9 讲)
PH401:数学物理 I (2-1-0-6) 线性代数:线性向量空间:对偶空间和向量、柯西-施瓦茨不等式、实数和复数向量空间的定义、度量空间、线性算子、子空间;跨度和线性独立性:行减少和方法;基础和维度:使用简化的跨度和独立性测试 (RREF) 方法;线性变换:图像、核、秩、基础变换、转移矩阵、同构、相似变换、正交性、Gram-Schmidt 程序、特征值和特征向量、希尔伯特空间]。张量:内积和外积、收缩、对称和反对称张量、度量张量、协变和逆变导数。常微分方程和偏微分方程:幂级数解、Frobenius 方法、Sturm-Liouville 理论和边界值问题、格林函数;笛卡尔和曲线坐标系中不同波动方程的分离变量法,涉及勒让德、埃尔米特、拉盖尔和贝塞尔函数等特殊函数以及涉及格林函数的方法及其应用。教材:
作用 β 在 S 上是传递的,并将其变成齐次流形[2-5]。因此,U(H) 正则作用的基本向量场形成 GL(H) 作用的基本向量场代数的李子代数。[6] 证明了,为了描述 β 的基本向量场,只需考虑 U(H) 在 S(H) 上的正则作用的基本向量场以及与期望值函数 la(ρ)=Tr(aρ) 相关的梯度向量场,其中 a 是 H 上有界线性算子空间 B(H) 中的任意自伴元素,借助于所谓的 Bures-Helstrom 度量张量 [7-12]。这个例子提供了酉群 U(H)、S(H) 的 GL(H) - 齐次流形结构、Bures–Helstrom 度量张量和期望值函数之间的意外联系。然而,这并不是单调度量张量与一般线性群 GL(H) “相互作用”的唯一例子。事实上,在 [6] 中,还证明了 U(H) 正则作用的基本向量场以及与期望值函数相关的梯度向量场通过 Wigner–Yanase 度量
我们提出了一种通用的去噪算法,用于同时对量子态和测量噪声进行层析成像。该算法使我们能够充分表征任何量子系统中存在的状态准备和测量 (SPAM) 误差。我们的方法基于对由幺正运算引起的线性算子空间的属性的分析。给定任何具有噪声测量设备的量子系统,我们的方法可以输出探测器的量子态和噪声矩阵,最高可达单个规范自由度。我们表明,这种规范自由度在一般情况下是不可避免的,但这种退化通常可以使用关于状态或噪声属性的先验知识来打破,从而为几种类型的状态噪声组合固定规范,而无需对噪声强度进行假设。这样的组合包括具有任意相关误差的纯量子态,以及具有块独立误差的任意状态。该框架可以进一步使用有关设置的可用先验信息来系统地减少状态和噪声检测所需的观察和测量次数。我们的方法有效地推广了现有的解决问题的方法,并且包括了文献中考虑的需要不相关或可逆噪声矩阵或特定探测状态的常见设置作为特殊情况。
我们基于线性算子主矩阵函数的微扰理论,报告了量子态函数的最低阶级数展开。我们表明,这种类似泰勒的表示能够高效地计算受扰量子态函数,只需要了解未受扰状态的特征谱和零迹、厄米微扰算子的密度矩阵元素,而不需要分析完整的受扰状态。我们为两类量子态微扰开发了这一理论:保留原始状态向量支撑的微扰和将支撑扩展到原始状态支撑之外的微扰。我们重点介绍了两者的相关特征,特别是保留支撑的受扰量子态函数和度量可以使用 Fr´echet 导数优雅而高效地表示。我们应用微扰理论,为量子信息论中四个最重要的量(冯·诺依曼熵、量子相对熵、量子切尔诺边界和量子保真度)找到泰勒展开式的简单表达式,当它们的参数密度算子受到微小的扰动时。
与传统算法相比,量子算法在解决各种问题时都具有显著的加速效果。量子搜索、量子相位估计和哈密顿模拟算法是这一优势的最有力论据,这些算法是大量复合量子算法的子程序。最近,许多量子算法通过一种称为量子奇异值变换 (QSVT) 的新技术结合在一起,该技术使人们能够对嵌入酉矩阵的线性算子的奇异值进行多项式变换。在关于 QSVT 的开创性 GSLW'19 论文 [Gilyén et al. , ACM STOC 2019] 中,涵盖了许多算法,包括振幅放大、量子线性系统问题方法和量子模拟。在这里,我们通过这些发展提供了一个教学教程,首先说明了如何将量子信号处理推广到量子特征值变换,QSVT 自然而然地从中产生。与 GSLW'19 并行,我们使用 QSVT 构建直观的量子算法,用于搜索、相位估计和汉密尔顿模拟,并展示特征值阈值问题和矩阵求逆的算法。本概述说明了 QSVT 是如何成为一个包含三种主要量子算法的单一框架的,这表明量子算法实现了大统一。
摘要:模型检查技术已扩展到分析以量子马尔可夫链(经典马尔可夫链的扩展)表示的量子程序和通信协议。为了指定定性时间属性,使用基于子空间的量子时间逻辑,该逻辑建立在 Birkhoffer-von Neumann 原子命题之上。这些命题确定量子态是否位于整个状态空间的子空间内。在本文中,我们提出了基于测量的线性时间时间逻辑 MLTL 来检查定量属性。MLTL 建立在经典线性时间时间逻辑 (LTL) 的基础上,但引入了量子原子命题,可在测量量子态后推断概率分布。为了便于验证,我们扩展了 Agrawal 等人 (JACM 2015) 描述的基于符号动力学的随机矩阵技术,以通过特征值分析处理更一般的量子线性算子(超算子)。此扩展使得开发一种有效的算法来根据 MLTL 公式对量子马尔可夫链进行近似模型检查成为可能。为了证明我们的模型检查算法的实用性,我们使用它来同时验证量子和经典随机游动的线性时间特性。通过此验证,我们证实了 Ambainis 等人(STOC 2001)先前发现的量子游动相对于经典随机游动的优势,并发现了量子游动独有的新现象。