抽象的非编码RNA(CRRNA)是由定期间隔短的短膜重复序列(CRISPR)基因座(CRISPR)基因座和与CRISPR相关的(CAS)的(CAS)的蛋白形成的,形成了crispr-CAS系统形成的复合物,这些复合物形成了与CAS-CataLe creeavage crre creage creeavage crrecry crrecry creeaveage crecrecry crrecry creeavage物质相互作用的相互作用的相互作用的creve criss cospectes。这些核糖蛋白启用的核酸易于编程的靶向促进了基于CRISPR的分子生物学工具的实施,用于体内和DNA和RNA靶标的体外修饰。尽管到目前为止鉴定出靶向DNA的Cas核酸酶的多样性,但在Pyogenes链球菌SPCAS9的天然和工程衍生物是基因组工程中最广泛使用的,至少部分是由于它们的CATA-LECALLYTIC稳健性以及一个异常短的图案(5''-ngg-ngg-3'''Pam)farnk sequence。但是,SPCAS9变体的大尺寸会损害该工具向真核细胞的传递,并且需要较小的替代品。在这里,我们在元基因组中识别与较小的CAS9蛋白(EHCAS9)相关的新的CRISPR-CAS9系统,该系统靶向以5'-NGG-3'PAM为两侧的DNA序列。我们开发了一种简化的EHCAS9工具,该工具专门切割DNA靶标,可用于原核生物和真核细胞中的基因组编辑应用。
鹰嘴豆(Cicer Arietinum L.)是第二大重要的谷物豆科植物,主要是在残留的土壤水分上种植的,尤其是在撒哈拉以南非洲和南亚的半干旱地区。在全球范围内,它以1,456万公顷的公顷生长,每年产量为1476万吨(FAO-Stat,2018)。这是亚洲和非洲数百万人饮食中蛋白质,矿物质,纤维和维生素的重要来源。鹰嘴豆产生受到多种非生物和生物胁迫的不利影响(Roorkiwal等,2020)。在过去的二十年中,基因组学的进步为理解复杂性状的遗传学提供了更大的见解。在几种农作物物种中剖析定量性状基因座(QTL)的最常见方法是使用源自两国杂交的种群(Varshney等,2015)。在鹰嘴豆的情况下,已经使用二元映射种群绘制了几种生物和非生物应力以及农业面部性的特征(Barmukh等,2021; Jha等,2021; Jha等,2021; Mallikarjuna et al。,2017; Paul et al。 Al。,2020年; Varshney等人,2019年;
瑞穗调查技术有限公司 越山佑介,经济学家,研究部亚洲研究团队,yusuke.koshiyama@mizuho-rt.co.jp 镰田浩介,高级经济学家,研究部亚洲研究团队,kosuke.kamata@mizuho-rt.co.jp 本出版物仅以免费向读者提供信息为目的,绝非招揽交易。尽管本出版物是根据我们认为可靠和正确的来源编写的,但瑞穗调查技术有限公司不保证其准确性和确定性。请读者在使用本出版物时自行判断。另请注意,本出版物的内容如有变更,恕不另行通知。如果读者不希望从瑞穗调查技术有限公司免费获得信息,请读者告知他们希望暂停订阅。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 2 月 19 日发布。;https://doi.org/10.1101/2023.02.18.529093 doi:bioRxiv preprint
摘要:种子糖成分,主要包括果糖,葡萄糖,蔗糖,raf鼻和stachyose,是大豆[甘氨酸Max(L.)Merr。]种子质量。但是,对大豆糖成分的研究是有限的。为了更好地了解大豆种子中糖成分的遗传结构,我们使用了323个大豆种质添加剂的种群进行了全基因组关联研究(GWAS),这些研究在三种不同的环境下进行了生长和评估。在GWAS中选择并使用了总计31,245个单核苷酸多态性(SNP)≥5%(MAFS)≥5%,缺少数据≤10%。与单个糖相关的分析72定量性状基因座(QTL),与总糖相关的14个。在六个染色体的铅SNP的100 kb旋转区域内的十个候选基因与糖含量显着相关。根据GO和KEGG分类,大豆中的糖代谢涉及八个基因,并在拟南芥中显示出相似的功能。另外两个位于与糖相关的已知QTL区域中,可能在大豆的糖代谢中发挥作用。这项研究促进了我们对大豆糖组成的遗传基础的理解,并促进了控制这种特征的基因的鉴定。认同的候选基因将有助于改善大豆中的种子糖成分。
图1 Gemtuzumab Ozogamicin(GO)的细胞毒性作用通过GSK3α /β抑制剂在急性髓样白血病(AML)细胞系中增强。对于所有实验,在孵育48小时后确定特异性凋亡。所得数据表示为三个独立实验的平均值±标准偏差(SD)。(a)U937和Marimo细胞用所示浓度CHIR99021(CHIR)处理。凋亡是通过用膜联蛋白V和碘化丙啶(PI)染色来确定的,然后进行流式细胞仪。(b)U937和Marimo细胞用指定的CHIR浓度处理,然后通过蛋白质印迹分析β-蛋白酶的积累。(c)用2.5μg/ml,0.5μg/ml(对于THP-1)或单独使用的0.25μg/ml(对于NB4)或与CHIR结合处理。*,**和***分别表示P <0.05,P <0.01和P <0.001。(d)细胞用GO,CHIR或GO + CHIR处理。全细胞裂解物的聚(ADP-核糖)聚合酶(PARP)。β-肌动蛋白用作负载对照。(E)Marimo,KO52和U937细胞用GO处理AZD2858(A2848)或GO + A2858。使用学生的t检验确定了GO和GO + A2858之间观察到的差异的统计显着性。*和***分别表示p <0.05和p <0.001。(f)Marimo,KO52和U937细胞用GO处理AZD1080(A1080)或GO + A1080处理。使用Student t -test确定了GO和GO + A1080之间观察到的差异的统计学意义。*,**和***分别表示p <0.05,p <0.01和p <0.001。
• 为开发具有“GAAFET”结构的集成电路而“专门设计”的“ECAD”“软件”不属于 ECCN 3D006 的范围,如果此类软件未经修改便用于开发以下集成电路:(1) 不具有 GAAFET 结构;(2) 处于“生产”状态;并且 (3) 仅因反恐原因而受管制或属于 EAR99 物品。请参阅:EAR 第 772.1 节“专门设计”定义的第 (b)(3) 段。 • 为开发具有“GAAFET”结构的集成电路而“专门设计”的“ECAD”“软件”不属于 ECCN 3D006 的范围,如果 (1) 该软件未经任何修改而开发时“知道”它将用于开发不具有 GAAFET 结构的集成电路,而这些集成电路仅因反恐原因而受管制或属于 EAR99;并且 (2) 有与软件开发同时期的文件,这些文件全部支持该设计意图。请参阅:EAR 第 772.1 节中“专门设计”定义的第 (b)(4) 款。• 符合 ECCN 3D006 开头定义的 ECAD 软件还必须满足管制物项清单第 (a) 或 (b) 款规定的标准。这些段落指的是业界称为布局布线的 EDA 软件,以及“RTL”到“GDSII”数字设计流程中的 RTL 综合软件。
前交叉韧带 (ACL) 损伤后,膝关节本体感觉缺陷和神经可塑性已被证实。然而,关于大脑对膝关节本体感觉任务的反应以及 ACL 损伤的影响的证据很少。这项研究旨在确定与膝关节本体感觉相关的大脑区域,以及 ACL 重建患者的相关大脑反应是否与无症状对照组不同。21 名右膝 (n = 10) 或左膝 (n = 11) 接受单侧 ACL 重建(平均术后 23 个月)的患者,以及 19 名性别、年龄、身高、体重和当前活动水平匹配的对照组 (CTRL),在同时进行功能性磁共振成像 (fMRI) 的同时进行了膝关节位置感 (JPS) 测试。集成运动捕捉提供实时膝关节运动学以激活测试指令,并提供准确的膝关节角度以获得 JPS 结果。膝关节角度重现过程中招募的大脑区域包括体感皮质、前额皮质和岛叶。各组之间的大脑反应和 JPS 误差均无差异,但各组之间的显著相关性表明,误差越大,同侧前扣带回 ( r = 0.476, P = 0.009)、缘上回 ( r = 0.395, P = 0.034) 和岛叶 ( r = 0.474, P = 0.008) 的反应就越大。这是第一项使用 fMRI 捕捉与可量化膝关节 JPS 相关的大脑反应的研究。激活的大脑区域以前与感觉运动过程、身体图式和内感受有关。我们的创新范例有助于指导未来研究大脑对下肢本体感觉的反应。
adeno相关的病毒(AAV)向量已成为体内基因替代疗法的首选平台,并代表了治疗单基因疾病(如血友病)的最有希望的策略之一。然而,对基因转移的免疫反应在临床试验中阻碍了人类基因治疗。在过去的十年中,很明显,先天免疫识别为诱导抗原特异性反应提供了信号,以针对载体或转基因产物产生。尤其是,TLR9识别对静脉细胞类树突状细胞(PDC)中载体的DNA基因组的识别已被鉴定为关键因素。来自临床试验和临床前研究的数据在矢量基因组中实施CpG基序,作为免疫反应的驱动因素,尤其是CD8 + T细胞激活的驱动因素。在这里,我们证明了AAV capsid特异性CD8 + T细胞的交叉化是否取决于XCR1 +
浓度。[1]在过去几年中,多种材料,例如多孔二氧化硅,金属有机框架(MOF),沸石,多孔碳,共价有机/三嗪框架(COFS/CTFS)和多孔有机聚合物(POPS),以供碳捕获应用。[1b,2]在这些材料中,化学膜起着重要的作用,因为它们对CO 2的亲和力提高,这对于在稀释应用中应用CCM是必不可少的。[1A,3]理想情况下,CCMS应结合高容量,高亲和力但容易再生,高选择性和对杂质的耐受性,例如水和其他痕量气体。[1A,4]但是,尚未找到满足所有这些标准的材料。模型系统可用于确定最重要的设计原理,以提高未来CCM的性能。对于下一代化学吸附剂设计设计的一个关键挑战是在吸附热ΔHADS↔再生能量和选择性之间找到理想的平衡。[1a]到目前为止,存在两种主要策略来计算CCM的这些指标:主动捕获中心的优化和多孔结构的优化。在此,我们提出了一种新策略:将附近的分子环境更改为吸附中心,以吸附CO 2吸附。我们的假设是,可以通过引入直接邻域中存在的不同官能团来调制活动捕获组(例如胺,NH2)与CO 2的相互作用。胺功能化材料是广泛研究的CCMS类。Wang等。Wang等。文献中存在最初的提示,实际上,纳米环境在化学CO 2吸附过程中起着重要作用。[5]机械研究表明,邻近组(NGS),例如表面上的相邻胺基,例如影响CO 2的吸附。[5a,c,6]据报道,硅胶材料中存在的硅烷醇基团(SIOH)也具有作用。[5a,6a – d]通过IR和NMR光谱(例如最常见的氨基甲酸酯[5a,c,6],以及尿素[6b,e]或碳酸氢盐种类,已经鉴定出不同的表面结合物质。[6e,f]到目前为止,只有很少的研究集中在相邻群体的影响下。研究了与相邻OH/NH 2种的共存的吡啶氮种类的影响,发现这些相邻群体在增强捕获性能