Cow -pea(Vigna Unguiculata L.)是一种未充分利用的蔬菜豆类土著,主要在非洲种植和消费。但是,它在农业生产和消费方面的影响力在全球范围内已扩大。这种有弹性的作物以承受各种环境压力的能力而闻名,使其适合小型农民常用的边际作物生产系统。尽管cow豆具有对干旱的耐受性,但它对盐度胁迫和生物剂尤其敏感。对干旱的耐受程度在不同的品种之间有所不同,这需要进一步的研究才能开发出更多的弹性品种。不断变化的气候模式和相关的不确定性凸显了迫切需要繁殖更多弹性和生产性的牛皮品种。传统的植物育种技术产生了新的牛p,但是耕种的牛皮纸中的遗传多样性有限,为未来的传统繁殖工作带来了挑战。新的育种技术(NBT),包括基因编辑工具,单碱基对改变和DNA甲基化方法,为加速牛港改善提供了有希望的替代方法。然而,这种方法还面临着与组织培养中器官发生(OG)和体细胞胚发生(SE)成功相关的挑战。本综述研究了组织培养的挑战和进步,以提高cow豆生产力和针对非生物和生物胁迫的韧性。
关于喜马拉雅生物库技术(CSIR-IHBT)的CSIR-IHBT CSIR-INSTIUTE,位于喜马拉雅山脉西部的帕拉普尔(HP),具有愿景为“成为通过可持续发展的Misalayan BioreSources的可持续利用来提高生物经济学的全球技术领导者”。该研究所的任务“发现,创新,开发和传播来自喜马拉雅生物的过程,工业,环境和学术界的过程,产品和技术”。因此,该研究所具有围绕喜马拉雅植物的基本和翻译研究的任务,包括工业和商业重要性的植物,例如药用,芳香,花卉,香料,甜味剂,甜味剂植物等。开发多元化技术。CSIR-IHBT,PALAMPUR提前向印度不同州的农民/官员进行培训,以进行高海拔和经济重要的植物组织培养。CSIR-IHBT可用的组织培养设施迎合了研究所的几个计划,包括开发用于高空药用和经济重要的植物的组织培养方案,经济上重要的植物的基因工程,提供咨询以建立组织文化实验室以及为农民,企业家,企业家,国家和经济上重要的物种提供培训。
c。当愈伤组织或外植体暴露于细胞分裂素的正确组合,有时是低的生长素浓度时,射击诱导开始形成。芽可能像植物或愈伤组织上的小芽一样出现。在此阶段,植物细胞开始分化为芽分生组织,这些分生组织成长为功能性芽。d。射击伸长一旦形成不定的芽,就需要将其拉长并发展成可行的植物。这通常涉及将新形成的芽转移到低细胞分裂素和高营养含量的培养基中。e。芽伸长后生根,将植物体转移到可能含有生长素的生根培养基中,以鼓励根部形成。在将植物性转移到土壤或适应外部条件之前,必须建立根。
Crotalaria 属植物以其对线虫的拮抗作用而闻名。研究发现,吡咯里西啶生物碱是参与这种拮抗作用的主要代谢物。为了获得生物碱含量更高、作为生物杀线虫剂的潜力更大的提取物,我们研究了通过微繁体外培养的 Crotalaria juncea 和 Crotalaria ochroleuca 提取物的化学成分和杀线虫活性。值得注意的是,C. ochroleuca(致死浓度 95% (LC 95 ) = 157.7 μg mL -1 )和 C. juncea(LC 95 = 189.9 μg mL -1 )愈伤组织提取物对爪哇根结线虫表现出高毒性。超高效液相色谱与四极杆飞行时间高通量质谱 (UPLC-QTOF-MS E ) 分析表明,其中含有吡咯里西啶生物碱、黄酮、黄酮苷和异黄酮。这些发现凸显了与传统栽培植物相比,组织培养从 Crotalaria 物种中获取提取物的潜力,并且提供了具有杀线虫作用的更高浓度的代谢物,为可持续农业铺平了道路。
会议开始于植物生物技术系教授兼主管E. Kokiladevi博士的热烈欢迎讲话。在她的讲话中,她强调了组织培养在解决全球粮食安全和可持续作物生产方面的变革作用。植物分子生物学与生物技术中心主任N. Senthil博士概述了培训的概述,强调了植物组织培养在农业和工业中的应用以及受过训练的人力的短缺。 植物育种与遗传学中心主任R. Ravikesavan博士的特别讲话强调了跨学科的合作,这对于推进生物技术研究至关重要。植物分子生物学与生物技术中心主任N. Senthil博士概述了培训的概述,强调了植物组织培养在农业和工业中的应用以及受过训练的人力的短缺。植物育种与遗传学中心主任R. Ravikesavan博士的特别讲话强调了跨学科的合作,这对于推进生物技术研究至关重要。
将传统育种与体外培养技术相结合,辅以组织学和显微镜分析,可以增强植物特性、保护濒危物种,并有助于在具有经济价值的植物中生产有价值的化合物。这些方法为细胞过程提供了重要的见解,指导了植物生物技术研究。在多细胞植物中,传统育种与体外培养技术相结合可以增强作物特性并保护稀有药用植物。愈伤组织,即大量未分化细胞,在组织培养再生中起着关键作用。组织学分析是在显微镜下检查组织,对于了解胚胎发生、愈伤组织形成和再生过程中的细胞过程至关重要。扫描和透射电子显微镜等显微镜技术揭示了细胞结构和细胞器,推动了植物组织培养技术的发展,并有助于物种保护和化合物生产。组织学研究还揭示了组织培养过程中的结构变化,优化了培养条件。通过直接或间接方法进行的体细胞胚胎发生为繁殖和生物技术提供了独特的优势。本综述鼓励进一步使用组织学技术来改进组织培养应用,以造福社会。关键词:组织学,植物组织培养,微观,愈伤组织培养
地址:印度古吉拉特邦西德布尔哥伦布全球大学植物学系 *通讯作者:Nirali Tank电子邮件:Tank.nirali94@gmail.com接收到:18-04-2024;接受:19-04-2024;发表:15-11-2024 doi:10.21608/ejar.2024.279271.1532具有药用特性的抽象植物是可以挽救生命的重要全球药物来源。是生物技术的选择,繁殖和保存的最重要的工具是生物技术。因为它包含多种类型的二级代谢产物,因此Butea Monosperma具有广泛的治疗能力,在制药行业中赢得了重要的位置。最小的种子生存力,种子速率的发芽低以及单芽孢杆菌的遗传异质性阻碍了其传播。长期种植这种重要植物的主要障碍是探索过多,栖息地损坏和有限的范围。丁亚单体是一种突出的药用植物,它是体外的组织培养和微型传播是完善的过程。对于这种特定的植物物种,对使用植物生长调节剂治疗的快速和可重复反应已成为遗传转化研究的关键组成部分。本章涵盖了单芽孢杆菌的遗传转化的进步和改善以及体外再生的方法。总而言之,我们为具有药用价值的重要树种提供建议和未来方向。它在药物上也非常重要(Firdaus&Mazumder,2012年)。其整个工厂都有商业和医疗价值。关键字:Butea Monosperma,微繁殖,遗传转化,保护介绍,尽管它是木质尺寸的木质树,它在整个印度,孟加拉国,尼泊尔,斯里兰卡,缅甸,泰国,泰国,泰国,柬埔寨,柬埔寨,柬埔寨,马来西亚,马来西亚和西部印度尼西亚,林地(Fabacea)(worl b. (Kirtikar&Basu,1935年)。这棵树生长到中等高度为12至15米,是直立的。是为特定目的定位的,这棵树是最美丽和最独特的树。丁亚单斯佩尔玛已成为当代医学的瑰宝,并广泛用于Unani Healing,Ayurveda和同种疗法治疗中。传统上声称其具有严格的性质,愤慨,改变,性刺激物,一种驱虫剂,抗菌和抗血性。butea Chew是从树皮中提取的深红色排放。它具有抗真菌性和抗动脉粥样硬化的品质,并且含有大量的小氯化和单宁酸(Gunakkunru等,2005)。许多植物切片已显示出具有抗微生物活性的植物化学物质,包括生物碱,氰化糖苷,酚类化合物,类黄酮,黄酮,萜类化合物,单宁和皂苷(Thirupathaiah,2007)。B.单子种子还用于治疗多种疾病,例如肿瘤,出血桩,肾结石,肠蠕虫,腹部问题和炎症(Anonymous,1988)。此外,从种子中的提取物,部分和分离的元素被鉴定为具有抗病毒(Yadava&Tiwari,2005),Anthelmintic(Prashanth et al。2001)和抗生素特性(Mehta等人。1983)。 此外,这棵树的花朵是类黄酮的出色供应商,被称为具有抗惊厥药(Kasture等,2000)和抗肝毒性(Wagner等,1986)的品质。 该树种的其他用途包括染料,树脂,木材和饲料(Reddy等人 2001)。 印度沿海高原代表B. monosperma的本地生态系统。 整个高原总共只有大约100种植物,表明人口相对较小。 根据生物多样性评估控制管理研讨会,印度安得拉邦的治疗工厂的生物多样性控制控制研讨会是, B. Monosperma是一种罕见且受到威胁的治疗植物。 目前由于植物零件的损害收集而濒临灭绝,用于柴火和药用目的,破坏其自然栖息地以及对其有限的可用性的无知(Aileni等人。 2014)。 此外,该植物由幼苗传播(Tandon等,2003),但是其生存力和发芽率很低。 许多研究人员正在使用组织培养技术来为药品B. monosperma培养这种关键植物,这是由于该工厂的可用性下降和全世界需求的不断增长。 因此,保留可能是有益的1983)。此外,这棵树的花朵是类黄酮的出色供应商,被称为具有抗惊厥药(Kasture等,2000)和抗肝毒性(Wagner等,1986)的品质。该树种的其他用途包括染料,树脂,木材和饲料(Reddy等人2001)。印度沿海高原代表B. monosperma的本地生态系统。整个高原总共只有大约100种植物,表明人口相对较小。B. Monosperma是一种罕见且受到威胁的治疗植物。目前由于植物零件的损害收集而濒临灭绝,用于柴火和药用目的,破坏其自然栖息地以及对其有限的可用性的无知(Aileni等人。2014)。此外,该植物由幼苗传播(Tandon等,2003),但是其生存力和发芽率很低。许多研究人员正在使用组织培养技术来为药品B. monosperma培养这种关键植物,这是由于该工厂的可用性下降和全世界需求的不断增长。因此,保留
•假设A想要向B发送消息,该消息称为明文。•现在,为了避免阅读明文,使用算法和秘密键(在1)加密明文。•此加密的宣传文字称为Ciphertext。使用相同的秘密密钥和加密算法反向运行(在2),•b可以获取a的明文,因此读取消息并保持安全性。•常规加密主要具有5种成分:
I.引入植物的任何部分,包括细胞,组织和器官,都可以在人工培养基,无菌环境和受控环境中进行培养。此过程称为“植物组织培养”。这组方法是一种测试策略,可以根据细胞理论来显示细胞理论,该方法指出,细胞是所有生物中的结构和繁殖的基本构件,即单一细胞的遗传能力可以产生整个多细胞生物的遗传能力。植物细胞的必不可少的植物细胞的特征是微化量的快速构成量子的量表,以快速的量表和概括性地构成了相当的量子,并逐渐构成了genotyper in genotyper in genotyper in nimeper in genotype contemypers in genotype airtipe and genotype contemypeptip。具有在世界范围内生产健康幼苗的能力,在园艺,工业和农业中,微繁殖变得越来越重要。年份和植物周期的减少(Suman,2017年)。此外,它是植物遗传保护的重要工具。资源,作物增强和新品种通过基因工程和somaclonal变异而传播。启动培养基是营养溶液单独或与天然提取物结合使用,并发表了一些重要的发现(Knudson L 1922);然而,体外鉴定植物组织培养物的建立取决于植物生长调节剂的存在[Thimann等,1939]。不同组合和数量的重要发展
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。