肠神经胶质细胞(EGC)是肠神经系统(ENS)的重要组成部分,在胃肠道发育,稳态和疾病中起关键作用。经历了由各种信号通路调节的复杂分化过程。是消化系统最动态的细胞之一,EGC对其周围微环境中的提示反应,并与肠内各种细胞类型和系统进行通信。形态学研究和最近的单细胞RNA测序研究已经在EGC种群中揭示了异质性,对区域功能和在疾病中的作用有影响。在胃肠道疾病中,包括炎症性肠道疾病(IBD),感染和癌症,EGCS调节神经可塑性,免疫反应和肿瘤发生。最近的证据表明,EGC对微环境提示做出塑料反应,适应其表型和在疾病状态中的功能并扮演至关重要的作用。它们表现出分子异常并改变与其他肠细胞类型的通讯,强调了其治疗潜力作为靶标。本综述探讨了EGC的多方面角色,特别是强调了它们与肠道中各种细胞类型的相互作用,以及它们对胃肠道疾病的重要贡献。了解EGC在胃肠道生理和病理学中的复杂作用对于发展胃肠道疾病的新型治疗策略至关重要。
氢气有望像电力一样是清洁能源载体,可能会用于燃料电池车等技术。广泛采用氢可以减少碳排放;但是目前,它是由化石燃料生产的。可再生能源波动且能量密度低,因此需要存储才能有效使用它。在这项研究中,我们将开发中端温度固体氧化物电解细胞,以有效地将过量的可再生能力转化为氢以存储,尤其是通过创新细胞的发展。
癌症代谢是阐明肿瘤细胞与免疫细胞之间通信的关键因素。例如,在肿瘤细胞增殖过程中,糖酵解增加导致肿瘤细胞产生大量的L乳酸和TGF-β,从而通过促进肿瘤微环境中的调节性T细胞(TREG)的产生来阻止肿瘤免疫(1)。用2-脱氧葡萄糖(一种糖酵解的抑制剂)治疗可通过减少TREG产生来增强抗肿瘤免疫力。值得注意的是,抗PD-1治疗已被证明可以激活T细胞,同时还促进了肿瘤微环境中的糖酵解。在某些患者中,抗PD-1抗体治疗可能导致肿瘤微环境中Treg的增殖增加,从而限制免疫检查点抑制剂的有效性。Xuekai等。建议,抗PD-1和抗TGF-β疗法的结合可能会提供一种新的解决方案来克服对抗PD-1疗法的抗性。Wang等。 进一步阐明了肿瘤微环境中的TGF-beta如何有助于抵抗抗PD-1治疗。 例如,PD-1在食管癌细胞逃避的免疫中起着至关重要的作用,该细胞表达高水平的TGF-β。 食管癌细胞产生的 TGF-β在与肿瘤相关的巨噬细胞中诱导M2-型,从而减少了通过PD-1/PD-L1途径参与特定抗肿瘤反应的CD8+ T细胞的种群。 此外,TGF-beta间接通过激活肿瘤微环境中的Treg来促进免疫抑制。 )。 Shen等。Wang等。进一步阐明了肿瘤微环境中的TGF-beta如何有助于抵抗抗PD-1治疗。例如,PD-1在食管癌细胞逃避的免疫中起着至关重要的作用,该细胞表达高水平的TGF-β。TGF-β在与肿瘤相关的巨噬细胞中诱导M2-型,从而减少了通过PD-1/PD-L1途径参与特定抗肿瘤反应的CD8+ T细胞的种群。此外,TGF-beta间接通过激活肿瘤微环境中的Treg来促进免疫抑制。)。Shen等。此外,脂质过氧化显着影响肿瘤微环境的调节(Xiao等人。富含脂质的肿瘤微环境可以通过CD36(一种脂肪酸转运蛋白)的上调在肿瘤相关的巨噬细胞中诱导M2型表型。Treg也表达了CD36,使其非常适合富含脂质的环境。在雌激素受体阳性(ER+BR)乳腺癌患者的低风险生存群体和高危生存群体之间的免疫活性,脂质生物合成和药物代谢方面存在差异。分析表明,高危患者表达高水平的ALOX15,一种相关的基因
范可尼贫血 (FA) 是一种使人衰弱的遗传性疾病,具有多种严重症状,包括骨髓衰竭和癌症易感性。CRISPR-Cas 基因组编辑通过利用 DNA 修复来操纵基因型,并已被提议作为 FA 的潜在治疗方法。但 FA 是由 DNA 修复本身的缺陷引起的,从而阻止使用同源定向修复等编辑策略。最近开发的碱基编辑 (BE) 系统不依赖于双链 DNA 断裂,可能用于靶向 FA 基因中的突变,但这仍有待测试。在这里,我们开发了一种概念验证治疗性碱基编辑策略,以解决患者造血干细胞和祖细胞中最常见的两种 FANCA 突变。我们发现,优化腺嘌呤碱基编辑器构建体、载体类型、向导 RNA 格式和递送条件可在多种 FA 患者背景中产生非常有效的基因修饰。优化的碱基编辑恢复了 FANCA 表达、FA 通路的分子功能以及对交联剂的表型抗性。ABE8e 介导的编辑在 FA 患者的原代造血干细胞和祖细胞中既具有基因型有效性,又恢复了 FA 通路功能,表明碱基编辑策略在未来 FA 临床应用中具有潜力。
在原核生物和真核生物中,大多数已鉴定的离子泵 ATPase 属于以下三种结构类型之一。(i)F1Fo ATPase(F 型)存在于线粒体内膜(2)、叶绿体类囊体膜(3)和细菌细胞质膜(4)中。(ii)E1E2 ATPase(P 型)存在于真菌(5)、植物(6)和动物的细胞质膜中[包括 Na',K4-ATPase(7)和 H +,K + -ATPase(8)],以及肌细胞的肌浆网(Ca 2+-ATPase)(9)和细菌细胞质膜(K+-ATPase)(10,11)。 (iii) 已鉴定出第三类 ATPase(V 型),并从真菌和植物液泡(参考文献 12 及其中的参考文献)、包被囊泡(13、14)和嗜铬颗粒(15、16)的膜中部分纯化。正如 Mellman 等人(17)所建议的,我们使用术语“液泡 ATPase”来指代第三类 ATPase。F1Fo ATPase 通常使用 H+ 的电化学梯度(18)或偶尔使用 Na+ 梯度(19)来合成 ATP。这种类型的酶也表现出 ATPase 活性,在某些情况下仅在用蛋白酶活化后才表现出 ATPase 活性(20)。叠氮化物和 N,N'-二环己基碳二酰亚胺可抑制 F1Fo ATPase 的酶活性;寡霉素也可抑制线粒体 ATPase(21)。在 E1E2 ATPases 中,ATP 水解释放的能量与阳离子跨膜转运偶联。酶循环通过构象状态,包括形成磷酸化中间体。酶活性不受叠氮化物或寡霉素的影响,但被钒酸盐特异性抑制,在大多数情况下被 N-乙基马来酰亚胺和异硫氰酸荧光素抑制,而对于 Na4 ,K4-ATPase,则被乌巴因抑制 (5-11)。液泡 ATPases 似乎会水解 ATP,产生质子梯度,用于酸化细胞内区室 (12、17、22)。这组 ATP 酶因其抑制剂特异性而与其他两组 ATP 酶区分开来。液泡 ATPase 不受叠氮化物、寡霉素、钒酸盐或乌巴因的抑制。相反,
摘要:成年人的心脏无法在组织损伤后恢复完全心脏功能,这使心脏再生成为当前的临床未满足需求。有许多临床程序旨在减少受伤后缺血损伤;但是,尚无刺激成年心肌细胞恢复和增殖的可能性。多能干细胞技术和3D培养系统的出现彻底改变了领域。特别是3D培养系统通过获得更准确的人类微环境条件来在体外建模疾病和/或药物相互作用,从而增强了精度医学。在这项研究中,我们涵盖了基于干细胞的心脏再生医学的当前进展和局限性。特别是,我们讨论了基于干细胞的技术和正在进行的临床试验的临床实施和局限性。然后,我们解决了3D培养系统的出现,以产生心脏类细胞器,以更好地代表人类心脏的微环境,用于疾病建模和遗传筛查。最后,我们深入研究了从心脏器官中与心脏再生有关的见解,并进一步讨论了对临床翻译的影响。
摘要 将干扰素处理过的细胞的细胞质提取物与双链 RNA 和 ATP 一起孵育,可形成一种低分子量的无细胞蛋白质合成抑制剂,其有效浓度为亚纳摩尔。通过将来自此类细胞的 poly(I)poly(C)-Sepharose 结合酶级分与 [:IH 或 [a- 或 y-32P]ATP 一起孵育,可方便地合成该抑制剂。该放射性抑制剂的特征在于其在尿素存在下在 DEAE-Sephadex 上的行为,以及在酶、碱和高碘酸氧化和 ft 消除的顺序降解中获得的产物。其结构似乎是 pppA2'p5'A2'p5'A。除了 2'-5' 键之外,我们没有发现任何其他修改或异常的证据。有时抑制剂制剂似乎包括相应的二聚体 (pppA2'p5'A)、四聚体 [ppp(A2'p)3A]、五聚体 [ppp(A2'p)4A],以及数量逐渐减少的高级寡聚体。三聚体、四聚体和五聚体的活性相似,但二聚体的活性较低,即使有活性。
干细胞研究必不可少。过去几年,全球干细胞研究的进展表明,多能干细胞生物学(即将成体干细胞或体细胞重新编程为多能干细胞)的科学发展为未来提供了光明的机会。罗氏公司正在利用这些技术进行研究;然而,对这些技术的科学理解仍处于早期阶段。利用成体、胚胎和胎儿干细胞以及 iPSC 进行研究对于增进对疾病的了解和开发治疗方法是必不可少的。
摘要 驯化微藻有望为人类家庭和工业消费提供可持续的各种生物资源。由于微藻工程技术的限制,其潜力还远未得到充分挖掘。相关技术不如异养微生物、蓝藻和植物的技术那么发达。然而,最近对微藻代谢工程、基因组编辑和合成生物学的研究极大地帮助提高了转化效率,并为该领域带来了新的见解。因此,本文总结了微藻生物技术的最新发展,并探讨了通过代谢工程和合成生物学过程生产特色产品和商品产品的前景。在简要介绍了经验工程方法和载体设计之后,本文重点介绍了定量转化盒设计,详细阐述了目标编辑方法和新兴的藻类细胞代谢数字化设计,以实现高产量的有价值产品。这些进步使得微藻工程方式从单基因和基于酶的代谢工程转变为系统级精确工程,从带有转基因 (GM) 标签的细胞转变为不带转基因标签的细胞,并最终从概念验证转变为切实的工业应用。最后,提出了微藻工程的未来趋势,旨在为特定菌株的特色产品和商品产品在新发现的物种中建立个性化转化系统,同时在模型藻类物种中开发复杂的通用工具包。
