医疗保健纺织品是病原体增殖的关键储层,要求紧急呼吁进行创新的干预措施。在这里,通过集成的“排斥,杀死和检测”功能引入了一类新的智能织物(SF),这是通过层次结构化的微粒,修改的纳米粒子和酸性响应性传感器来实现的。SF对气溶胶和基于液滴的病原体的传播具有显着的弹性,与各种耐药细菌,念珠菌和PHI6病毒的未涂层织物相比,减少的降低超过了99.90%。与未涂层的织物相比,涉及健康和受感染个体的体液的实验分别显示出99.88%和99.79%的临床尿液和粪便样本的实验。SF的比色检测能力以及机器学习(96.67%的精度)确保了可靠的病原体鉴定,从而促进了健康和感染的尿液和粪便污染的样品之间的准确分歧。sf有望在医疗机构中革新预防感染和控制,从而通过早期污染检测提供保护。
美国政府根据其他交易协议编号HQ00342390025赞助的努力,美国高级功能面料,公司和政府。尽管有任何版权符号,但美国政府有权出于政府目的复制和分发转载。本文所包含的观点和结论是作者的观点,不应被解释为一定代表美国政府的官方政策或认可。使用,重复或披露应受到美国高级功能织物公司和政府之间HQ00342390025的限制。
摘要 - 对于各种应用,对可穿戴触觉设备的需求已迅速增加。但是,许多障碍设备会干扰佩戴者的活动和动作。此外,通过适应佩戴者的自然姿势,几种触觉设备无法引起直觉的触觉感觉。为了解决这些问题,我们建议使用轻巧的可穿戴织物执行器提出肘角引导系统。所提出的执行器是由织物制成的,并在其上附着两个麦基本型人工肌肉,使其非常轻巧,并促进了表面触觉的传递,以直观地诱导肘部伸展和流失。由织物执行器引起的表面触觉感觉已调整为自然运动,而不会干扰佩戴者的运动。此外,提议的系统通过改变向用户实时传递给用户的表面感觉的强度来测量并指导肘角。通过涉及人类参与者的实验证明了拟议系统的准确性。
该套件适合从新鲜或冷冻动物,细胞,血液,细菌和其他样品中提取总纯度。DNA片段的最大分子量为50 kb的DNA片段可以纯化,而无需使用诸如苯酚,氯仿和乙醇沉淀等有毒溶剂。优化的缓冲液系统用于有效地,特别是将热解溶液的DNA连接到基于二氧化硅的离心吸附柱。PCR抑制剂和其他酶促反应可以通过两步进行洗涤步骤有效地去除。最后,可以使用低盐卫生棉条或水洗脱获得高纯度DNA。纯化的DNA可以直接用于酶促消化,PCR,PCR实时,图书馆构造,Southern印迹,分子标记和其他下游实验。
编织材料变形发生在将织物形成更复杂的纺织结构的过程中,以及在成品的开发过程中。多种因素影响纺织材料的变形特性。关键因素是所用纱线的特性、织物的结构以及经纱和纬纱的密度。编织材料的各向异性特性要求分析织物经向和纬向的变形。此外,研究还包括分析与经向成 45° 角的编织材料变形。研究结果表明,增加纬纱的密度可以改善纬向和 45° 角的屈服和断裂极限特性。根据所得结果,提出了可用于预测平纹编织纺织材料在经向、纬向和 45° 角处受拉时变形的依赖关系。
无论是有意产生声波还是试图减轻不必要的噪音,声音控制都是一个充满挑战和机遇的领域。这项研究探讨了传统织物作为声音发射器和抑制器的作用。当将丝绸织物连接到压电纤维致动器的单股上时,它会发出高达 70 dB 的声音。尽管织物结构复杂,但振动计测量结果显示其行为让人联想到经典的薄板。通过比较织物分析发现,相对于粘性边界层厚度的织物孔径会影响声发射效率。使用两种不同的机制证明了声音抑制。在第一种中,直接声干扰可将声音降低高达 37 dB。第二种依靠压电纤维平息织物振动,将振动波的幅度降低 95%,并将传输的声音衰减高达 75%。有趣的是,这种振动介导的抑制原则上可以无限减少声音。它还可以动态控制织物的声反射率,最高可提高 68%。130 μ m 丝织物的声音发射和抑制效率为服装、交通运输和建筑等各种应用中的声音控制提供了机会。
•随着连接到网络的设备数量的增加,您需要快速扩展校园网络而不增加复杂性。许多物联网设备的网络功能有限,并且需要在建筑物和校园之间进行L2邻接。传统上,通过使用基于数据平面的洪水和以太网切换技术固有的学习机制在端点之间扩展虚拟LAN(VLAN)来解决此问题。传统的以太网切换方法效率低下,因为它利用广播和多播技术宣布媒体访问控制(MAC)地址。也很难管理,因为您需要配置和手动管理VLAN以将其扩展到新的网络端口。当您考虑移动设备的爆炸性增长时,此问题会增加多重折叠。
在这项研究中,采用了创新的电氧化技术来创建基于石墨烯的前向渗透(FO)膜。这涉及在可伸缩的平板底物上构建聚乙二胺还原氧化石墨烯(PEI:RGO)层,该层用聚乙烯甘油 - 甘油 - 氧化物(3,4-乙烯 - 二羟基苯乙烯)官能化,可通过电苯甲酸酯(P:P:p:p:p:p:p:p:p:p:p)(p:p:p:p:p:p:p:p:p:p:p:p)。在10 V的优化电势下,我们成功地将PEI:RGO层压与P:P:P:P支持层相结合,导致高度多孔结构。与单面PEI:RGO膜(SS-PEI:RGO)相比,双面涂层PEI:RGO膜(DS-PEI:RGO)表现出色。ds-PEI:RGO显示出比SS-PEI:RGO(90.1%)的离子盐排斥更高(95%),但略低于实验室大规模的质量质量质量降低过程。有趣的是,与SS-PEI:RGO和CTA-FO膜(分别为0.017 g/L和2.549 g/L)相比,所得的DS-PEI:RGO膜表现出降低的特异性盐通量(0.014 g/L)。使用与藻酸钠的合成海水评估了PEI:RGO膜的防染色特性。在3.0 V DC电位下,与没有电场的膜相比,PEI:RGO膜的恢复通量增加了30%。这种改进归因于PEI:RGO和相对带电的离子之间的电氧化机制,以及PEI:RGO和P:P:P:P链形成的独特纳米复合结构,有助于增强的膜完整性。
摘要:人们穿衣服以进行温暖,生存和现代生活的必要性,但是在现代时代,生态友好,缩短生产时间,设计和智慧也很重要。确定数据系列之间的关系并验证每个数据系列的接近性,灰色关系分析或GRA应用于纺织品,在纺织品中,无缝键合技术增强了组件之间的键。在这项研究中,聚氨酯前聚合物,2-羟基乙基丙烯酸酯(2-HEA)作为终端封顶剂,N-辛基丙烯酸酯(ODA)作为光吸剂用于合成双溶液的聚氨酯热融合粘合剂。taguchi质量工程和灰色关系分析用于讨论NCO的不同摩尔比:OH的影响以及添加丙烯酸丙烯酸甲酯对机械强度的摩尔比的影响。傅立叶变换红外光谱(FTIR)的结果显示了前聚合物的聚合反应的终止,并且在1730 cm -1时的C = O峰强度,表明有效键合与主链。晚期聚合物色谱法(APC)用于研究与丙烯酸丙烯酸甲酯键合的高分子量(20,000–30,000)聚氨酯聚合物聚合物,以达到光热术效应。热重分析(TGA)的结果表明,聚氨酯热融合粘合剂的热分解温度也增加,并且它们显示了多水醇的最高热解温度(349.89℃)。此外,使用双固定光热聚氨酯热融合粘合剂检测到高骨强度(1.68 kg/cm)和剪切强度(34.94 kg/cm 2)值。信噪比也用于生成灰色关系程度。据观察,NCO:OH的最佳参数比为4:1,单体的五摩尔。使用Taguchi质量工程方法来找到单质量优化的参数,然后使用灰色关系计算来获得多质量优化的参数组合,以热固化聚氨酯热融化粘合剂。该研究旨在满足纺织工厂中无缝粘合的要求,并通过设置可以有效提高生产速度并减少处理时间和成本的目标值来优化实验参数设计。
摘要:将五种不同尺寸(170、190、210、230和250 nm)的聚(苯乙烯甲基丙烯酸酯 - 丙烯酸丙烯酸)光子晶体(PCS)(PCS)应用于三种普通织物,即多酰胺,聚酯和棉花。使用扫描电子显微镜和两种UV/VIS反射分光光度计技术(集成球体和散射测量法)分析了PC涂层的织物,以评估PC的自组装以及获得的光谱和颜色特性。结果表明,织物的表面粗糙度对PC产生的颜色产生了重大影响。聚酰胺涂层的织物是唯一具有虹彩效果的样品,比聚酯和棉样品产生更加生动和鲜艳的色彩。观察到,随着入射光角的增加,随着新反射峰的形成,反射峰的高营养偏移发生。此外,用照明剂的光源在聚酰胺样品上进行了颜色行为模拟。照明剂A模拟显示出比用D50照明的模拟颜色更绿色和黄色的结构色。使用散射法对聚酯和棉花样品进行分析以检查虹彩是否在眼检查后看不见,然后证明存在于这些样品中。这项工作可以更好地理解结构颜色及其虹彩如何受到纺织底物形态和纤维类型的影响。