1。简介石墨及其工业用途的发现可以追溯到16世纪,即在第1届工业革命之前的200多年,该革命是从18世纪中期到19世纪中期。石墨的第一次工业用途是用作铅笔铅和降压材料。现在用于包括核能在内的各种高科技领域。每年生产超过120万吨石墨,未来需求的上升趋势。石墨廉价且分布在世界范围内。根据可验证的资料来源,存在数百年来满足需求的储备。现有的石墨供应几乎是有限的。一旦将石墨的碎屑剥落,它就会成为一种令人着迷的材料,称为“石墨烯”,这是一个令人惊叹的发现,直到2004年才发生。石墨烯比铁钢强1000倍,其电导率和导热性的10倍以上是金属,并且是当今已知的最薄,最轻巧的功能。2010年,诺贝尔物理学奖因其发现而获得。创新的材料和产品可以使用石墨烯在各种领域创建。因此,世界各地的研究机构和公司几乎将石墨烯的实际应用中的研究和开发进行。在发现以来的几年中,已经开发了电子产品,声学产品,声学产品,每日商品,轮胎,高尔夫球,运动服和鞋子,从而利用石墨烯来提高冲击强度,电导率特征等。
白矮星的持续冷却过程中,会发生一些影响其冷却速度的事件。这些事件中最重要的就是其核心结晶,这是 C / O 内部冷却到临界温度以下时发生的相变。这种转变会释放潜热,以及由于凝固过程中 C 和 O 离子重新分布而产生的引力能,从而减缓白矮星的演化。最近报道了核心结晶的明确观测特征——冷却序列中的物体堆积。然而,现有的演化模型很难定量地再现这种特征,因此在用于测量恒星群年龄时,其准确性令人怀疑。结晶过程中释放的能量的时间和数量取决于 C / O 相图的确切形式。利用先进的 Gibbs-Duhem 积分法和最先进的固相和液相 Monte Carlo 模拟,我们获得了非常精确的相图版本,可以精确模拟相变。尽管取得了这种改进,但当前的演化模型仍然低估了结晶堆积的程度。我们得出结论,潜热释放和 O 沉降本身不足以解释这些观察结果,其他未解释的物理机制(可能是 22 Ne 相分离)起着重要作用。
用于汽车和航空航天工程中使用的食品,药品和电子包装以及金属聚合物接头,在界面上的水分吸附在长期的关节性能中起着重要作用。[3,4]这是因为固定的层状结构有助于显着降低小分子的扩散速率,例如氧气和水分,由于其独特的结构,具有紧密堆积的聚合物链,并具有垂直于底物的紧密堆积的聚合物链。目前将固定层状结构结构的形成理解为受到封闭的结晶的结果。[5]已经报道了两种类型的封闭结晶。在发生微相聚合物或聚合物混合物中发生微相聚合物时发现了第一种类型。当每个组分的结晶温度(T C)不同时,具有较高T C的组分首先结晶并形成其他聚合物的纳米或微观限制。因此,较低T C的分量在限制下结晶。[6]在超薄膜中发现了第二种粘附的结晶,来自稀聚合物溶液或聚合物熔体。[7]在各种晶体聚体中发现了这种层状晶体结构,例如聚(乙烯基氟化物),聚乙烷氧化物),聚(3-羟基丁酸)和聚(L-乳酸)。在我们的上一篇论文中,关于聚合物间相结构对半石化热塑性和金属之间粘附的影响,我们表明可以在聚合物 - 金属中的相互之间找到层状结构。[8]尽管形成这些层状Crys-talline结构的CRYS级数机制,例如,关于生长取向的结构,仍然不太了解,但纳米级限制(含量很少的纳米量)被认为是这些层状结构结构的关键。[9]层状结构的形成对金属心皮界面的断裂行为有重大影响,这在例如从模具表面释放热塑性塑料至关重要。这些结果表明,层状结构可能形成,而无需上述纳米级。在本文中,进一步研究了聚合物中的层状结构,以进行各种半晶体热塑料和不同的底物材料。还使用硅
a. 巴黎萨克雷大学,ENS Paris-Saclay,CNRS,PPSM,91190 Gif-sur-Yvette,法国 b. CNR-NANOTEC – 纳米技术研究所,c/o Campus Ecoteckne,Via Monteroni,73100 Lecce,意大利 c. 考纳斯理工大学聚合物化学与技术系,Radvilenu plentas 19,LT50254 Kaunas,立陶宛 d. 杜伦大学物理系,杜伦 DH1 3LE,英国 * antonio.maggiore@ens-cachan.fr 摘要 光物理特性的控制对于电致发光器件和发光材料的持续发展至关重要。原始分子的制备和研究揭示了高效材料和器件的设计规则。在这里,我们基于热激活延迟荧光发射体中流行的供体-受体设计制备了 7 种新化合物。我们首次引入了苯并呋喃并[3,2-e]-1,2,4-三嗪和苯并噻吩并[3,2-e]-1,2,4-三嗪受体,它们与几种常见的供体相连:吩恶嗪、吩噻嗪、咔唑和 3,6-二叔丁基咔唑。在溶液和固态下进行了 DFT 计算和稳态和时间分辨光物理研究。虽然含有吖嗪部分的衍生物在任何形式下都是非发射性的,但包含 3,6-二叔丁基咔唑的化合物在所有情况下都显示 TADF。更有趣的是,用咔唑供体取代的两种衍生物在分散在聚合物基质中时具有 TADF 活性,在室温下以纯膜(微晶形式)的形式呈现磷光性。
凭借前所未有的太空通道,我们现在可以利用微重力来指导整个药物发现、设计和开发过程。微重力研究带来了新的科学见解,可以实现创新疗法,并允许制药公司将之前搁置的未能充分发挥其潜力的药物重新投入开发流程。微重力药物研究的一个有前景的领域是微重力下药物的结晶。研究发现,由于浮力减小以及缺乏自然对流、沉降和相分离特性,微重力几乎消除了干扰,从而减缓了结晶速度并产生了更大、更有序的药物晶体。此外,没有重力意味着成批的晶体往往比在地球实验室中制造的晶体更均匀,缺陷更少。Redwire 利用其在太空生物技术研究方面的专业知识,在应对微重力结晶带来的机遇方面取得了重大进展,于 2023 年 11 月成功推出了一个尖端药物开发平台,礼来公司 (Lilly) 是第一个客户。 Redwire 今年取得了两项具有重大意义的突破性成就