,我们提出了一种通过快速到可绝化的(STA)动力学快速生成Rabi模型的非经典基态的方法。通过将参数放大器应用于Jaynes-Cummings模型来模拟时间依赖性量子Rabi模型。使用实验可行的参数驱动器,该STA协议可以通过与绝热协议快的速度快10倍的过程来生成大尺寸的SchréodingerCat状态。如此快速的进化增加了我们的方案抵抗耗散的鲁棒性。我们的方法可以自由设计参数驱动器,以便可以在实验室框架中生成目标状态。在很大程度上失调的光 - 物质耦合使协议可与实验中操作时间的缺陷进行鲁棒性。
在 AQC 模型中开发的几种值得注意的算法包括用于解决非结构化搜索和组合优化问题的方法。在理想情况下,这些算法的渐近复杂性分析表明,与最先进的传统方法相比,计算速度可能有所提高。然而,非理想条件的存在,包括非绝热动力学、残余热激发和物理噪声,使潜在计算性能的评估变得复杂。量子退火的互补计算启发式方法捕获了绝热条件的放松,它适用于在有限温度和开放环境中运行的物理系统。虽然量子退火 (QA) 为实际量子物理系统的行为提供了更准确的模型,但非绝热效应的可能性掩盖了与传统计算复杂性的明显区别。
摘要 像 D-Wave 2000Q 这样的绝热量子计算机可以近似地解决 QUBO 问题,这是一个 NP-Hard 问题,并且已被证明在多个实例中优于传统计算机 [52]。解决 QUBO 问题字面意思是解决几乎任何 NP-Hard 问题,如旅行商问题 (TSP)、航空调度问题、蛋白质折叠问题、基因型归因问题等,从而实现重大的科学进步,并可能为物流、航空、医疗保健和许多其他行业节省数百万/数十亿美元。然而,在量子计算机上解决 QUBO 问题之前,必须将它们嵌入(或编译)到量子计算机的硬件上,这本身就是一个非常困难的问题。在这项工作中,我们提出了一种有效的嵌入算法,让我们能够快速嵌入 QUBO 问题,使用更少的量子比特,并使目标函数值接近全局最小值。然后,我们将我们的嵌入算法的性能与目前最先进的 D-Wave 嵌入算法的性能进行比较,并表明我们的嵌入算法明显优于 D-Wave 嵌入算法。我们的嵌入方法适用于完美的 Chimera 图,即没有缺失量子位的 Chimera 图。
已经确定局部晶格自旋汉密尔顿量可用于通用绝热量子计算。然而,这些证明中使用的双局部模型汉密尔顿量是通用的,因此不限制自旋之间所需的相互作用类型。为了解决这一问题,本文提供了两个简单的模型汉密尔顿量,它们对于致力于实现通用绝热量子计算机的实验者来说具有实际意义。所提出的模型汉密尔顿量是已知的最简单的量子 Merlin-Arthur 完备 QMA 完备双局部汉密尔顿量。使用一系列技术实现的具有单局部横向场的双局部 Ising 模型可能是最简单的量子自旋模型,但不太可能适用于绝热量子计算。我们证明,通过添加可调的双局部横向 xx 耦合,该模型可以实现通用和 QMA 完备。我们还展示了仅具有单局部 z 和 x 场以及双局部 zx 相互作用的自旋模型的通用性和 QMA 完备性。
传统 CMOS 逻辑的能效正在快速接近实际极限,而这最终源于基本的物理考虑。根据 IRDS 路线图,到 2030 年左右,最小典型逻辑信号能量预计将降至最低,约为 0.2 fJ (1.25 keV)。这将加剧可实现的设备密度(随着行业转向 3D VLSI 技术,该技术可以在一个制造过程中集成多个“层”有源设备,设备密度将继续增加)与芯片封装内功率耗散密度保持可控的需求之间的矛盾。实际上,这些限制将导致实际芯片设计中潜在可用的设备数量资源越来越未得到充分利用,加剧了目前已经存在的“暗硅”问题。
绝热进化是时间调制的超材料的新兴设计原理,通常受到拓扑量子计算(例如编织操作)的见解的启发。然而,对经典绝热超材料的追求源于以下假设:经典和量子绝热进化是等效的。我们表明,只有在所有频段的频率距离距0的频率之间,并且在经典系统中不能再现了量子绝热演化的某些实例,例如量子绝热演化的某些实例,例如量子绝热演化的某些实例,例如量子绝热进化的某些实例,在经典系统中不能再现。这是因为模式耦合在经典力学上根本不同。我们得出经典条件,以确保绝热性,并证明只有在这些条件下(与量子绝热条件不同),单个带浆果相位和Wilczek-Zee矩阵的任何地方都会出现,而堕落的波段则出现,因为它们会出现,这是编码经典绝热进化的几何形状的有意义的数量。最后,对于一般的多频道系统,我们在非亚伯仪仪上的经典系统潜力中发现了一个校正项。
摘要 几何相具有抵抗某些类型局部噪声的内在特性,因为它只依赖于演化路径的全局特性。同时,非阿贝尔几何相是矩阵形式,因此可以自然地用于实现高性能量子门,即所谓的完整量子计算。本文回顾了非绝热完整量子计算的最新进展,并重点介绍了各种可以提高门性能的最优控制方法,包括门保真度和鲁棒性。此外,我们还特别关注其可能的物理实现和一些具体的实验实现的例子。最后,通过所有这些努力,在最新技术范围内,实现的完整量子门的性能在某些条件下可以优于传统的动态量子门。
尽管PARP抑制剂(PARPI)现在构成了治疗同源重组有缺陷的癌症的护理标准的一部分,但从头开始并获得了抗性限制了其整体效率。以前,BRCA1-δ11Q剪接变体的过表达已显示出引起PARPI抗性。癌细胞如何实现增加的BRCA1-δ11Q表达尚不清楚。使用具有不同BRCA1突变的同基因细胞,我们表明HuWe1的降低会导致BRCA1-δ11Q和PARPI抗性的水平增加。这种效果是针对能够表达BRCA1-δ11Q的细胞(例如BRCA1外显子11突变细胞),在无法表达BRCA1-δ11Q的BRCA1突变体中也没有看到,也没有在BRCA2突变细胞中看到。以及增加外显子11突变细胞中BRCA1-δ11Q蛋白的水平,Huwe1沉默还恢复了RAD51核灶和铂盐耐药性。HuWe1催化结构域突变。这些结果表明,如何达到BRCA1-δ11Q和PARPI耐药性的水平升高,将HuWe1识别为PARPI耐药性的候选生物标志物,以评估未来的临床试验,并说明某些PARPI耐药机制如何仅在具有特定BRCA1突变的患者中起作用。
摘要这项研究为基于有效的低功率VLSI方法设计了一种在信号和图像处理中设计的4位阵列乘数的创新技术。建议的架构使用近阈值区域的绝热方法来优化传播延迟和耗能之间的权衡。乘数是许多数字电子环境中必不可少的组成部分,导致了许多针对某些应用程序定制的乘数类型的诞生。与传统的CMOS技术相比,该技术大大降低了动态和静态功率耗散。接近阈值绝热逻辑(NTAL)是使用单个时间变化的电源实现的,这简化了时钟树的管理并提高了能源效率。使用Tanner EDA工具和幽灵模拟器在TSMC 65 nm技术节点上模拟了建议的设计,并确保验证了优化的结果。与典型的CMOS方法相比,在保持相似的设计参数的同时,可变频率,电源电压和负载电容的功率耗散大约有66.6%,14.4%和64.6%的显着提高。值得注意的是,随着频率变化,负载电容在C负载= 10 pf和vdd(max)= 1.2 V时保持恒定。随着电源电压的变化,负载电容在C负载= 10 pf时保持恒定,而频率为f = 4 GHz; and with load capacitance variation, the frequency is maintained at F = 4 GHz and the supply voltage at VDD (max) = 1.2 V. Keywords: - 4-bit array multiplier, adiabatic logic, low-power VLSI, Near Threshold Region, NTAL approach, TSMC 65 nm CMOS technology, mixer circuit, signal and image processing, energy efficiency, Tanner EDA, Spectre simulator, and功率耗散优化。
摘要:绝热压缩空气储能 (ACAES) 被认为是一种有前途的、电网规模的中长期储能技术。在 ACAES 中,空气存储可能是等容(恒定体积)或等压(恒定压力)。等容存储,其中内部压力在系统充电和放电时在上限和下限之间循环,在机械上更简单,但它会导致不良的热力学后果,从而损害 ACAES 的整体性能。等压存储可能是一种有价值的替代方案:存储量会发生变化,以抵消当空气质量进入或离开高压存储时可能发生的压力和温度变化。在本文中,我们基于预期的 ACAES 和现有的 CAES 系统特征开发了一个热力学模型,以比较等容和等压存储的效果。重要的是,通过使用二阶多项式拟合等熵压缩机效率,包括由于滑动存储压力导致的非设计压缩机性能。对于我们建模的系统,等压系统往返效率 (RTE) 达到 61.5%。即使不考虑压缩机非设计性能下降,等容系统也能达到 57.8%。这一事实与因节流和混合不同温度下储存的热量而产生的固有损失有关。在我们的基准情景中,等熵压缩机效率在 55% 到 85% 之间变化,等容系统 RTE 比等压系统低约 10%。这些结果表明,CAES 的等压储存值得进一步开发。我们建议后续工作研究能量流以及等压储存机制的可扩展性挑战。