进行高通量筛选。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。282 3.1。基于结构和计算信息的理性设计。。。。。。。。282 3.2。基于筛选的技术。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。284 4。生物传感器的新应用。。。。。。。。。。。。。。。。 div>。 div>285 4.1。 div>多重载体。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>285 4.2。 div> 超分辨率显微兼容的生物构成。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 287 4.3。 div> 在道态生理条件下的应用。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>285 4.2。 div>超分辨率显微兼容的生物构成。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>287 4.3。 div>在道态生理条件下的应用。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>288 4.4。 div> 进一步的申请。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 289 5。 div> 结论。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>288 4.4。 div>进一步的申请。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>289 5。 div>结论。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>290 div>
虽然直接细胞移植在治疗许多使人衰弱的疾病方面具有巨大的希望,但注射后细胞存活不良和植入的临床翻译有限。尽管可以保护膜破坏膜的扩展流量并提供体内支持性的3D环境,从而改善了细胞保留和治疗成本,但大多数是由合成或自然收获的聚合物产生的,这些环境是免疫原性和/或化学无限的。This work presents a shear-thinning and self-healing telechelic recombinant protein-based hydrogel designed around XTEN – a well-expressible, non-immunogenic, and intrinsically disordered polypeptide previously evolved as a genetically encoded alternative to PEGylation to “eXTENd” the in vivo half-life of fused protein therapeutics.与源自软骨寡聚基质蛋白衍生的自缔合线圈结构域进行,形成了单个成分的物理交联的水凝胶,表现出快速剪切稀疏和通过同质体系盘旋螺旋衬包的自我修复。 可变稳定线圈关联的个体和组合点突变,可以简单地对遗传编程材料进行粘弹性和生物降解性。 最后,这些材料可以通过培养,注射和经胸中植入小鼠中的培养基源性肾(HEK)和胚胎干细胞衍生的心肌细胞(HESC-CMS)保护和维持可行性。 这些基于XTEN的注射水凝胶对体外细胞培养和体内细胞移植应用都显示出希望。,形成了单个成分的物理交联的水凝胶,表现出快速剪切稀疏和通过同质体系盘旋螺旋衬包的自我修复。可变稳定线圈关联的个体和组合点突变,可以简单地对遗传编程材料进行粘弹性和生物降解性。最后,这些材料可以通过培养,注射和经胸中植入小鼠中的培养基源性肾(HEK)和胚胎干细胞衍生的心肌细胞(HESC-CMS)保护和维持可行性。这些基于XTEN的注射水凝胶对体外细胞培养和体内细胞移植应用都显示出希望。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月25日。 https://doi.org/10.1101/2025.01.24.634423 doi:Biorxiv Preprint
1。2 UHF导线,颜色编码的蓝色,连接到WRC单元上标记为“ WiFi”的端子(右手线)。端子位于单元的后部和/或颜色编码的蓝色。2。卫星通信天线铅连接到标记为“ IRI”(左手螺纹)的中心或后端子。它也可能是颜色编码的黄色(在2合1天线上可能没有标记)。3。标记为“ GPS”的GPS天线引线,连接到WRC单元(右手线)上标有“ GPS”的端子。终端可以在设备的侧面或后部和/或颜色编码的绿色。4。gsm,有一个带有WRC单元的小棍子天线,并连接到WRC单元(左手螺纹)上标记为“ GSM”的相应端子。端子位于设备的后部和/或颜色编码的红色。
先天免疫是抵御病毒的第一道防线,其中线粒体在诱导干扰素 (IFN) 反应中起着重要作用。BHRF1 是一种在 Epstein-Barr 病毒再激活过程中表达的多功能病毒蛋白,它会调节线粒体动力学并破坏 IFN 信号通路。线粒体是一种可移动的细胞器,借助细胞骨架,特别是微管 (MT) 网络,它可以在细胞质中移动。微管会经历各种翻译后修饰,其中包括微管蛋白乙酰化。在本研究中,我们证明 BHRF1 会诱导微管过度乙酰化以逃避先天免疫。事实上,BHRF1 的表达会诱导缩短的线粒体聚集在细胞核旁边。这种“线粒体聚集体”围绕着丝粒组织,其形成依赖于微管。我们还观察到 α-微管蛋白乙酰转移酶 ATAT1 与 BHRF1 相互作用。使用 ATAT1 敲低或不可乙酰化的 α-微管蛋白突变体,我们证明了这种高乙酰化对于线粒体聚集体的形成是必需的。在 EBV 重新激活期间也观察到了类似的结果。我们研究了导致线粒体聚集的机制,并确定了运动蛋白是线粒体聚集所需的马达。最后,我们证明了 BHRF1 需要 MT 高乙酰化来阻止 IFN 反应的诱导。此外,MT 高乙酰化的丧失会阻止自噬体定位到靠近线粒体聚集体的位置,从而阻碍 BHRF1 启动线粒体自噬,而线粒体自噬对于抑制信号通路至关重要。因此,我们的结果揭示了 MT 网络及其乙酰化水平在诱导亲病毒线粒体自噬中的作用。
通过将无监督和监督的机器学习方法结合起来,我们提出了一个称为Usmorph的框架,以进行星系形态的自动分类。在这项工作中,我们通过提出基于Convnext大型模型编码的算法来更新无监督的机器学习(UML)步骤,以提高未标记的星系形态分类的效率。该方法可以概括为三个关键方面,如下所示:(1)卷积自动编码器用于图像降级和重新冲突,并且模型的旋转不变性通过极性坐标扩展提高; (2)利用名为Convnext的预训练的卷积神经网络(CNN)来编码图像数据。通过主体组合分析(PCA)维度降低进一步压缩了这些特征; (3)采用基于装袋的多模型投票分类算法来增强鲁棒性。,我们将此模型应用于宇宙场中的i -band样品的i -band图像。与原始的无监督方法相比,新方法所需的聚类组的数量从100减少到20。最后,我们设法对大约53%的星系进行了分类,从而显着提高了分类效率。为了验证形态层化的有效性,我们选择了M ∗> 10 10m⊙的大型星系进行形态学参数测试。分类结果与星系在多个参数表面上的物理特性之间的相应规则与现有演化模型一致。增强的UML方法将来将支持中国空间站望远镜。我们的方法证明了使用大型模型编码对星系形态进行分类的可行性,这不仅提高了星系形态分类的效率,而且还节省了时间和人力。此外,与原始UML模型相比,增强的分类性能在定性分析中更为明显,并且成功超过了更多的参数测试。
摘要:Cas9(DCAS9)核酸内切酶的催化无效突变体具有多种生物医学应用,最有用的是转录的激活/抑制。dcas9家族成员也正在成为潜在的实验工具,用于在独立活细胞和完整组织的水平上进行基因映射。我们对CAS9介导的核室可视化的一组工具进行了初步测试。我们研究了doxycycline(DOX) - 可诱导(TET-ON)的细胞内分布,这些构建体的构造中编码DCAS9直系同源物(ST)(ST)和脑膜炎N.脑膜炎(NM)与EGFP和MCHERRY FOLORESCENT蛋白(FP)融合的人类A549细胞。我们还研究了这些嵌合荧光构建体的时间依赖性表达(DCAS9-FP)在活细胞中诱导中的诱导中,并将其与实验性DCAS9-FP表达的时间过程进行了比较灌注。在诱导后24小时内,肿瘤异种移植物发生了麦克利 - 奇氏菌表达的体内诱导,并通过使用皮肤的光学清除(OC)来可视化。OC通过局部应用Gadobutrol启用了肿瘤异种移植物中FP表达的高对比度成像,因为红色和绿色通道的FI增加了1.1-1.2倍。
抽象细菌及其病毒捕食者(噬菌体)不断发展以相互颠覆。许多抑制噬菌体的细菌免疫系统是根据可以水平传播到多种细菌的流动遗传元素编码的。尽管细菌中免疫系统普遍存在,但这些免疫系统是否常常在自然界遇到的噬菌体作用。此外,有限的例子证明了这些噬菌体如何应对这种免疫系统。在这里,我们确定了具有编码细菌免疫系统DARTG的新型遗传元素的全球病原体弧菌霍乱的临床分离株,并揭示了免疫系统对共同循环裂解噬菌体ICP1的影响。我们表明,DARTG抑制ICP1基因组复制,从而防止ICP1斑块。我们通过识别反击DARTG并允许ICP1后代生产的ICP1编码蛋白来进一步表征DARTG介导的防御与ICP1之间的冲突。最后,我们将这种蛋白ADFB识别为一种功能性抗毒素,ABRO可能通过直接相互作用大门。在临床V.霍乱分离株中检测DARTG系统后,我们观察到ICP1分离株与功能性抗毒素的增加。这些数据强调了对霍乱弧菌及其裂解噬菌体的监视使用,以了解细菌与其自然界噬菌体之间的共同进化武器竞赛。
摘要本研究旨在确定科学教师对机器人编码的看法,这是近来的重要应用之一,预计将融入教育中。该研究被设计为案例研究,是定性研究方法之一。该研究的研究小组由12位科学教师组成。使用研究人员开发的半结构化访谈表,对参与的科学教师进行了半结构化访谈,以确定他们对机器人编码的看法。面试形式由两个部分组成。第一部分包括教师的人口统计学特征。第二部分包括开放式问题,旨在确定科学教师关于机器人编码的定义,在科学课上的机器人技术编码的可用性,教师对机器人编码的经验及其建议。使用描述性分析方法分析了收集的数据,并根据主题顺序解释。因此,可以说机器人编码应用在科学教育中是可用的,在发展学生的各种技能方面发挥了重要作用,并为课堂上的高效和永久学习做出了贡献。但是,得出的结论是,在知识和设备方面对教师和学生的支持,提供物质支持或资源是在课堂上使用的必要条件。关键词:科学老师,科学教育,机器人编码
这项研究提出了一种通过使用水热合成的铁(Fe)和钛(Fe)和钛(Ti)离子掺杂的方法来增强氧化锶(SRO)纳米颗粒(NP)的光催化特性。使用各种光谱和微观技术来表征材料,以确保对其结构和组成的准确分析。对甲基橙色染料降解的AS合成材料的光催化效率,在90分钟内使用3%掺杂材料在90分钟内取消了约98%。发现降解效率取决于几个因素,包括pH,初始染料浓度和催化剂剂量。最佳条件被确定为pH值为4,初始染料浓度为20 mg/L,催化剂剂量为150 mg。这些发现表明,Fe/Ti编码的SRO纳米颗粒在环境清理过程中的应用中具有很大的潜力,尤其是在有机污染物的降解中。该研究提供了对掺杂纳米颗粒在光催化中的合成和应用的宝贵见解,突出了它们的效率以及优化反应条件以最大程度地提高性能的重要性。