●如果过去已经从印度夺走了该动物,这是政府当局过去的证明,最好是AQCS的身份,并被考虑在重新IMPORT类别中。*注意:狗和猫必须对狂犬病接种超过1个月,但
帝国县是该国失业率最高的环境正义社区,有可能由锂行业转变。该县是该国少数几个可以提取锂来制造对电动汽车和可再生能源存储系统所必需的高性能电池的地区之一 - 这都是解决气候变化和国家安全所必需的。劳伦斯·伯克利国家实验室(LBNL)估计,可以提取1800万吨锂,产生足够的锂以为超过3.75亿台电动汽车电池供电,这比当今道路上目前的车辆数量还要多。企业,州和联邦政府正在该地区大量投资,以创造数千个新的高薪,高道路的就业机会。然而,帝国县迫切缺乏这种变革性经济转变所需的基础设施和受过训练的劳动力。该重新竞争的提议对于确保这些高额的高速工作向当地工人致敬至关重要,从而确保在没有长期以来已经过去的地区中包容性和公平的经济繁荣。此重新竞争提案是重要的经济和劳动力发展路线图,它将改善帝国谷居民在未来几代人的前景。
摘要。非交互式零知识证明(NIZK)是阈值加密系统中的必不可少的构件,例如多党签名,分布式关键产生和可验证的秘密共享,允许当事方在不揭示秘密的情况下证明正确的行为。此外,普遍合并(UC)Nizks在较大的密码系统中启用无缝组成。构建Nizks的一种流行方式是使用Fiat-Shamir变换来编译交互式协议。不幸的是,菲亚特 - 沙米尔(Fiat-Shamir)转换的nizk需要倒带对手,并且不可直线提取,这与UC相反。使用Fischlin的转换具有直线提取性,但以基本协议的许多重复为代价,导致具体效率差且难以设定参数。在这项工作中,我们提出了一个简单的新变换,该转换将代数关系的Sigma协议编译为UC-NIZK协议,而没有任何重复的开销。
我们开发并应用了随机编译(RC)方案的扩展,该协议包括对相邻Qubits的特殊处理,并大大降低了由于在IBMQ量子计算机(IBM_LAGOS和IBMQ_EHNINGEN)中使用错误门的超导QUBIT上的误解而引起的串扰效应。串扰错误,源于受控的(CNOT)两分门,是众多量子计算平台上的错误源。对于IBMQ机器,它们对给定量子计算的性能的影响通常被忽略。我们的RC协议由于串扰而变成一致的噪声变成一个去极化噪声通道,然后可以使用已建立的缓解误差方案(例如噪声估计电路)对其进行处理。我们将方法应用于Bardeen-Cooper-Schrieffer(BCS)Hamiltonian的非平衡动力学的量子模拟,以进行超导性,这是一个特别具有挑战性的模型,用于模拟量子硬件,因为Cooper Pairs的长距离相互作用。在135个cnot门的情况下,我们在一个与Trotterization或Qubit Decermence相反的串扰方面工作,主导了误差。我们对相邻量子位的旋转显示可显着改善噪声估计协议,而无需添加新的Qubits或电路,并允许对BCS模型进行定量模拟。
II。 div> 一般评论。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 3 A. div> 一般。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>II。 div>一般评论。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 A. div>一般。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 B.有关形式功能的其他注释。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 C.大多数行中内置在表单中的审计验证规则。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4
预防2005年5月生效的船舶污染(Marpol),目的是防止由船只发出的排气引起的空气污染。这些法规是在2000年1月1日或之后铺设的。层II和III Tier III NOX排放法规,设定了更严格的目标,分别在2011年1月1日和2016年1月1日之后或之后安装了船只的龙骨。层III法规仅适用于在排放控制区域运行时指定的船只。*3 eedi,适用于400吨或以上的新船,将参与国际航行,
算法推理任务涉及涉及逻辑模式的算法,例如完成Dyck语言,尽管他们最近的成功,但对大语言模型(LLMS)构成了挑战。先前的工作已使用LLM来生成程序语言,并应用了外部计算机来执行此类任务。然而,当飞行时,很难用解决方案的正确逻辑生成可执行的代码。即使这样,一个实例的代码也无法重用其他实例,尽管它们可能需要相同的逻辑来解决。我们提出了t Hink-和-e Xecute,这是一个新的框架,改善了LLMS的算法 - 固有推理:(1)在T Hink中,我们发现了在所有实例中共享的任务级逻辑,并用伪代码表达逻辑; (2)在e x -ecute中,我们将任务级伪代码量身定制为每个实例并模拟其执行。t hink-和-e xecute在算法算法推理任务中的表现优于几个强大的基线(包括婴儿床和锅)。我们表现出使用任务级伪代码而不是一一生成实例特定解决方案的优点。另外,我们表明,即使对自然语言指导进行了自然语言指导,伪代码也可以更好地改善LMS的推理。
摘要无法检测到的摘要ÖZ火灾变得无法控制。开始无法控制的火灾对人类和自然生命构成了重大危险。,尤其是在公共和拥挤的地区,大火可能导致生命损失和大规模财产损失。因此,有必要尽可能准确,快速检测火灾。与物联网(IoT)技术一起使用的烟雾探测器可以彼此交换数据。在这项研究中,使用机器学习算法处理从两种不同类型的基于IoT的烟雾探测器收集的数据。使用K-Nearest邻居(K-NN),多层感知器(MLP),径向基函数(RBF)网络,幼稚的贝叶斯(NB),决策树(DT),随机森林(RF)和Logistic Model树(RF)和Logistic Model树(LMT)算法。使用机器学习算法处理从烟雾探测器获得的数据,以创建非常成功的模型设计。该研究的目的是设计一个基于人工智能的系统,该系统能够尽早发现在室内和室外发生的火灾。
变分量子算法 (VQA),如量子近似优化算法 (QAOA)、变分量子特征值求解器 (VQE)、量子神经网络 (QNN) 和量子编译 (QC),有望在传统计算机以外的嘈杂中型量子 (NISQ) 设备上解决实际任务 1 。最近的成果证明了其在量子态制备 2 – 6 、量子动态模拟 2 、 7 – 9 和量子计量 10 – 14 方面的有效性。尤其是 QC,引起了人们的极大兴趣。它使用训练过程将信息从未知目标单元转换为可训练的已知单元 15 、 16 。该方法有多种应用,包括门优化 15 、量子辅助编译 16 、连续变量量子学习 17 、量子态层析成像 18 和量子对象模拟 2 。例如,可以准备量子对象(例如量子态),并使用 QC 2 在量子电路中模拟其演化。QC 的性能取决于量子比特的数量和电路深度。可训练量子电路的选择也至关重要,必须仔细选择。一些纠缠