N. A. Rink等。“ cfdlang:流体动力学中高阶方法的高级代码生成”。rwdsl'18。A. Susungi等。 “用于跨域张量优化的元编程” GPCE'18,79-92。 N.A. 溜冰场,N。A。和J. Castrillon。 “ teil:一种类型的安全张量张量中间语言”,Array'19,pp。 57-68A. Susungi等。“用于跨域张量优化的元编程” GPCE'18,79-92。N.A.溜冰场,N。A。和J. Castrillon。“ teil:一种类型的安全张量张量中间语言”,Array'19,pp。57-68
摘要 量子计算被视为后摩尔时代有望突破计算能力瓶颈的有前途的计算范式。量子处理器尤其是超导量子处理器的日趋成熟为量子算法的开发和实现提供了更多的可能性。作为量子算法实现的关键阶段,逻辑电路设计和量子编译也受到广泛关注,涉及量子逻辑电路综合(又称量子架构搜索)与优化、量子比特映射与路由等关键技术。近期研究表明,相关算法的规模和精度正在稳步提升,尤其是随着人工智能方法的融合。本文系统地回顾和总结了大量文献,探索从算法层面到量子硬件一体化设计优化方案的可行性,将逻辑电路设计和编译优化步骤结合起来,利用人工智能算法卓越的认知和学习能力,可以降低人工设计成本,提高执行精度和效率,促进量子算法在硬件上的实现和验证其优越性。
Öz摘要在这项研究中,硼nitrür量子点(BNKN) /还原的氧化石墨烯(RGO)杂化结构的合成,这是一种用于超级电容器的新电极材料。bnkn具有与氧化石墨烯(GO)相同的晶体结构,因此优选BNKN@RGO杂种结构显示出非常好的电气性能。hekzagonal硼nitrür(H-BN)基于纳米酰基的杂种材料,BNKN,热稳定性和电导率原因近年来出于原因,而Grafen在超耐效率研究中通常更喜欢特定的表面积。此外,在该结构中添加不同的纳米利酶以提高图形的电容值是发展碳材料的电子发射器性能。因此,通过考虑在超级电容器中使用的混合电极电化学活性来测量特定的电容值将增加电化学活性。由于电化学研究的结果,在BNKN@RGOH杂交结构的5 mVs-1筛选速率下获得207.5 f/g高电容值。在1,000个周期中还进行了88.9%的环状稳定性性能。
气候变化是当今全球问题。气候变化的主要原因之一是温室气体,自工业革命以来,其数量一直在增加(Clabeaux等,2020;Coşkun&Doğan,2021年)。据指出,对温室气体排放贡献最大的活动是私人部门(铁或钢的生产和水泥熟料的生产等。),众所周知,诸如焚化厂和水处理厂等公共设施释放了大量的温室气体(Bani Shahabadi等,2009)。最近,众所周知,水处理厂消耗了大量的电力和化学物质,导致了大量的CO 2排放(Rothausen&Conway,2011年)。尽管饮用水处理厂的CH 4和N 2 O比废水处理厂的排放量要小得多,但每年的温室气体排放量不能忽略(Kyung等,2013)。在不久的将来,治疗厂可能会严格受到方案的监管和控制。因此,必须迅速减少水处理厂的CO 2排放。
非局部博弈是理解纠缠和在具有多个空间分离的量子设备的环境中构建量子协议的基础工具。在这项工作中,我们继续了 Kalai 等人 (STOC '23) 发起的研究,该研究是在经典验证器和单个加密受限的量子设备之间进行的编译非局部博弈。我们的主要结果是,Kalai 等人提出的编译器对于任何双人 XOR 游戏都是可靠的。Tsirelson 的一个著名定理表明,对于 XOR 游戏,量子值由半定程序精确给出,我们通过证明 SDP 上界对于编译的游戏成立,直到编译产生的错误可以忽略不计,从而获得了我们的结果。这回答了 Natarajan 和 Zhang (FOCS '23) 提出的问题,他们展示了 CHSH 游戏特定情况的可靠性。利用我们的技术,我们获得了几个额外的结果,包括(1)并行重复 XOR 游戏的编译值的严格界限、(2)任何编译的 XOR 游戏的运算符自测试语句,以及(3)任何 XOR 游戏的“良好”平方和证书,从中可以看出运算符的刚性。
量子计算为解决传统计算机难以解决的问题提供了一种有前途的替代方案。绝大多数量子计算文献涉及量子比特、双态系统的集合以及产生它们之间任意相互作用的门。在任意相互作用的假设下,量子计算机的计算空间可缩放为 2 N ,其中 N 是量子比特的数量。状态空间的指数增长以及这些状态任意叠加的能力是量子计算机相对于传统计算的主要优势之一。然而,设计量子计算机的最大挑战之一是实现量子比特之间的相互作用,同时尽量减少与环境以及其他量子和经典噪声源的相互作用。最近的努力试图将量子问题映射到 d 状态(qudit)量子计算机上 [1]–[3]。早期的实验方法已将问题映射到多状态系统或量子比特的最优控制问题。这样的计算系统可按 d N 的量级缩放,其中 N 是量子比特的数量。其中一个主要目标是,与严格的量子比特系统相比,qudit 系统将具有更高的噪声容忍度。这与当今的主要方法形成了鲜明对比——使用一组双态单元或量子比特 [4],[5]。除了利用物理系统的自然特性来容忍噪声之外,qudit 量子计算机还可以减少空间需求。具体来说,高维系统上的量子计算可能比量子比特更有效率,甚至可能比量子比特系统提供渐近计算改进 [6]。此外,高维系统上的纠缠态无法通过成对纠缠量子比特态的张量积来模拟 [7]。
基于泡利的计算 (PBC) 由一系列自适应选择的、非破坏性的泡利可观测量测量驱动。任何以 Clifford+ T 门集编写并具有 t 个 T 门的量子电路都可以编译成 t 个量子比特上的 PBC。在这里,我们提出了将 PBC 作为自适应量子电路实现的实用方法,并提供了执行所需的经典边处理的代码。我们的方案将量子门的数量减少到 O ( t 2 )(从之前的 O ( t 3 / log t ) 缩放)并且讨论了空间/时间权衡,这导致在我们的方案中深度从 O ( t log t ) 减少到 O ( t ),代价是增加 t 个辅助量子比特。我们将随机和隐移量子电路的示例编译成自适应 PBC 电路。我们还模拟了混合量子计算,其中经典计算机有效地将小型量子计算机的工作内存扩展了 k 个虚拟量子比特,成本以 k 为指数。我们的结果证明了 PBC 技术在电路编译和混合计算方面的实际优势。
我们介绍了Trapped-ION Surface Code Compiler(TISCC),这是一种软件工具,该软件工具可根据本机捕获 - 离子门集生成一组通用表面代码补丁操作的电路。为此,TISCC管理着被困的离子系统的内部表示,其中捕获区域和连接处的重复模式被安排在任意大的矩形网格中。表面代码操作是通过在网格上实例化表面代码贴片来编译的,并使用方法对数据量量的横向操作,对稳定器plaquettes进行误差校正和/或相邻贴片之间的晶格手术操作进行了横断面。除了实现基本的表面代码仪器集之外,TISCC还包含角移动功能和单独使用离子运动实现的补丁翻译。在后一种情况下,所有TISCC功能都可以扩展到类似网格的硬件体系结构。TISCC输出已使用Oak Ridge Quasi-Clifford Simulator(ORQC)验证。
摘要变分混合量子经典算法 (VHQCA) 是利用经典优化来最小化成本函数的近期算法,该算法可以在量子计算机上进行有效评估。最近,VHQCA 已被提出用于量子编译,其中目标幺正 U 被编译成短深度门序列 V。在这项工作中,我们报告了这些算法一种令人惊讶的噪声弹性形式。也就是说,我们发现尽管在成本评估电路中存在各种不相干噪声源,但人们经常会学习正确的门序列 V(即正确的变分参数)。我们的主要结果是严格的定理,指出最佳变分参数不受广泛噪声模型的影响,例如测量噪声、门噪声和泡利通道噪声。此外,我们在 IBM 噪声模拟器上的数值实现在编译量子傅里叶变换、Toffoli 门和 W 态准备时表现出弹性。因此,变分量子编译由于其稳定性,对于噪声较大的中型量子设备具有实际用途。最后,我们推测这种抗噪声能力可能是一种普遍现象,适用于其他 VHQCA,例如变分量子本征解算器。