S. Haihua Chu,Daisy Lam,Michael S Packer,Jenny Olins,Alexander Liquori,Kyle Rehberger,Conrad Rinaldi,Jeffrey Marshall,Calvin Lee,Bo Yan,Bo Yan,Jeremy Decker,Jeremy Decker,Bob Gantzer,Scott Haskett,Scott Haskett,Tanggis Bohnuud,David Born,David born born barr barr,luiis,luuis,luuis。 Slaymaker,Nicole Gaudelli,Sarah Smith,Adam Hartigan和Giuseppe CiaramellaS. Haihua Chu,Daisy Lam,Michael S Packer,Jenny Olins,Alexander Liquori,Kyle Rehberger,Conrad Rinaldi,Jeffrey Marshall,Calvin Lee,Bo Yan,Bo Yan,Jeremy Decker,Jeremy Decker,Bob Gantzer,Scott Haskett,Scott Haskett,Tanggis Bohnuud,David Born,David born born barr barr,luiis,luuis,luuis。 Slaymaker,Nicole Gaudelli,Sarah Smith,Adam Hartigan和Giuseppe Ciaramella
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 1 月 11 日发布。;https://doi.org/10.1101/2021.01.11.426237 doi:bioRxiv preprint
Anzalone, AV、Koblan, LW 和 Liu, DR (2020)。使用 CRISPR–Cas 核酸酶、碱基编辑器、转座酶和主要编辑器进行基因组编辑。《自然生物技术》,1-21。
金帅, 1, 2, 6 费红远, 1, 2, 6 朱子旭, 1, 2, 6 罗英锋, 3, 6 刘金星, 1 高胜汉, 3 张锋, 4 陈宇航, 5 王彦鹏, 1, 2,* 和高彩霞 1, 2, 7,* 1 中国科学院遗传与发育生物学研究所、种子设计创新研究院、植物细胞与染色体工程国家重点实验室、基因组编辑中心,北京,中国 2 中国科学院大学现代农业学院,北京,中国 3 中国科学院微生物研究所、微生物资源国家重点实验室,北京,中国 4 明尼苏达大学植物与微生物生物学系、植物精准基因组学中心、微生物与植物基因组学研究所,明尼苏达州明尼阿波利斯55108,美国 5 中国科学院遗传与发育生物学研究所,种子设计创新研究院,分子发育生物学国家重点实验室,北京,中国 6 这些作者贡献相同 7 主要联系人 *通讯地址:yanpengwang@genetics.ac.cn (YW),cxgao@genetics.ac.cn (CG) https://doi.org/10.1016/j.molcel.2020.07.005
基因组编辑正在彻底改变植物研究和作物育种。序列特异性核酸酶 (SSN),例如锌指核酸酶 (ZFN) 和 TAL 效应核酸酶 (TALEN),已用于产生位点特异性 DNA 双链断裂并通过促进同源定向修复 (HDR) 实现精确的 DNA 修饰 (Steinert 等人,2016 年;Voytas,2013 年)。后来,RNA 引导的 SSN,例如 CRISPR-Cas9、Cas12a、Cas12b 及其变体,已应用于植物基因组编辑 (Li 等人,2013 年;Nekrasov 等人,2013 年;Tang 等人,2017 年;Zhong 等人,2019 年;Ming 等人,2020 年;Tang 等人,2019 年)。然而,HDR 依赖于 SSN 和 DNA 供体的同时递送,这在植物中一直具有挑战性( Steinert 等,2016; Zhang 等,2019)。在植物中实现高效 HDR 的另一个挑战是,在大多数细胞类型中,DNA 修复倾向于非同源末端连接(NHEJ)途径而不是 HDR( Puchta,2005; Qi 等,2013)。与受供体选择和 DNA 修复机制限制的 SSN 诱导的 HDR 不同,近年来开发的胞苷或腺嘌呤碱基编辑器可以在原型间隔物中 3-8 个核苷酸靶向窗口内将 C 转换为 T 或将 A 转换为 G( Komor 等,2016; Nishida 等,2016; Gaudelli 等,2017)。碱基编辑器虽然效率很高,但只能指导某些转换突变,而不能执行预定的颠换突变或插入和缺失 (indel)。在所有这些背景下,最近在人类细胞中开发所谓的引物编辑器 (PE) 方面取得的突破非常令人兴奋 ( Anzalone 等人,2019 )。在引物编辑中,Cas9H840A 切口酶与逆转录酶融合。融合蛋白在编辑 DNA 链上切口,通过引导到切口 DNA 并复制由引物编辑向导 RNA (pegRNA) 编码的遗传信息来启动逆转录。多功能的 pegRNA 是一种经过修饰的单向导 RNA (sgRNA),其 3' 端携带逆转录 (RT) 模板和引物结合位点 (PBS) 或序列中的引物。与 HDR 不同,PE 不需要 DNA 供体。在某些目标位点,PE 似乎也比碱基编辑器更精确、更高效(Anzalone 等人,2019 年)。
1 马萨诸塞大学医学院 RNA 治疗研究所,美国马萨诸塞州伍斯特 01605。2 TriLink BioTechnologies,美国加利福尼亚州圣地亚哥。3 囊性纤维化基金会,CFFT 实验室,美国马萨诸塞州列克星敦 02421。4 马萨诸塞大学医学院生物信息学和整合生物学项目,美国马萨诸塞州伍斯特。5 同济大学生命科学与技术学院,上海 200092。6 麻省理工学院 David H. Koch 综合癌症研究所,美国马萨诸塞州剑桥。7 麻省理工学院化学工程系,美国马萨诸塞州剑桥。8 哈佛大学和麻省理工学院 Broad 研究所 Merkin 医疗变革技术研究所,美国马萨诸塞州剑桥。9 哈佛大学霍华德休斯医学研究所,美国马萨诸塞州剑桥 02138。 10 哈佛大学化学与化学生物学系,美国马萨诸塞州剑桥 02138。11 麻省理工学院医学工程与科学研究所,美国马萨诸塞州剑桥。12 哈佛-麻省理工学院健康科学与技术分部,美国马萨诸塞州剑桥。13 马萨诸塞大学医学院分子、细胞和癌症生物学系,美国马萨诸塞州伍斯特。14 马萨诸塞大学医学院分子医学系,美国马萨诸塞州伍斯特。15 马萨诸塞大学医学院李伟波罕见疾病研究所,美国马萨诸塞州伍斯特市 Plantation Street 368 号,邮编 01605。✉ 电子邮件:Wen.Xue@umassmed.edu
+RZDUG +XJKHV 0HGLFDO ,QVWLWXWH +DUYDUG 8QLYHUVLW\ &RUUHVSRQGHQFH WR MGRHQFK#EURDGLQVWLWXWH RUJ 8QGHUVWDQGLQJ WKH IXQFQFQHQXQHQHQXT FOHRWLGH YDULDQWV LV FULWLFDO WR XQFRYHULQJ WKH JHQHWLF XQGHUSLQQLQJV RI GLVHDVHV EXW WHFKQRORJLHV WR FKDUDFWHUL]H YDULDQWV DUHJ OLQHWHJH 55 & 5JHVH &H WRVLQH EDVH HGLWRUV LQ SRROHG VFUHHQV WR VFDODEO\ DVVD\ YDULDQWV DW HQGRJHQRXV ORFL LQ PDPPDOLDQ FHOOV :H EHQFKPDUN WKH SHUIRUPDQFH RI VGLWHQLWHQLWHW LYH VHOHFWLRQ VFUHHQV DQG LGHQWLI\ NQRZQ ORVV RI IXQFWLRQ PXWDWLRQV LQ %5&$ DQG %5&$ ZLWK KLJK SUHFLVLRQ 7R GHPRQVWUDWH WKH\HWHWHWHWHVH SUREH VPDOO PROHFXOH SURWHLQ LQWHUDFWLRQV ZH FRQGXFW VFUHHQV ZLWK %+ PLPHWLFV DQG 3$53 LQKLELWRUV DQG LGHQWLI\ SRLQW PXWDWLRQV WKDWLWLWHVHVHVH VWDQFH )LQDOO\ ZH FUHDWH D OLEUDU\ RI FOLQLFDOO\ REVHUYHG YDULDQWV LQ JHQHV DQG FRQGXFW VFUHHQV LQ WKH SUHVHQFH RI FHOOXODU VWUHVLIGWWQLVQLWQLR\ LDQWV LQ QXPHURXV '1$ GDPDJH UHSDLU JHQHV :H DQWLFLSDWH WKDW WKLV VFUHHQLQJ DSSURDFK ZLOO EH EURDGO\ XVHIXO WR UHDGLO\ DQG VFDODEO\ IXQFWH]FQWHWL Y728 &7,21 $ PDMRU FKDOOHQJH LQ JHQRPLFV LV WKH IXQFWLRQDO FKDUDFWHUL]DWLRQ RI SUHFLVH JHQHWLF YDULDQWV DW D ODUJH VFDOH $OWKRXJK JHQRPH ZLGHVVXLWHWLVXLWHQ6 * LILHG WHQV RI WKRXVDQGV RI DVVRFLDWLRQV EHWZHHQ VLQJOH QXFOHRWLGH SRO\PRUSKLVPV 613V DQG SKHQRW\SHV LGHQWLILFDWLRQ RI WKH FDXVDO YDULDJVKWGWLQVJVJWKWK H IXQFWLRQDO FRQVHTXHQFH RI D FDXVDO YDULDQW LV PRUH GLIILFXOW VWLOO W\SLFDOO\ UHTXLULQJ ORZ WKURXJKSXW JHQRPH HGLWLQJ WR LQWURGXFH YKDUXDWKWKWHWQL QDO VLJQLILFDQFH )XQFWLRQDO FKDUDFWHUL]DWLRQ RI JHQHWLF YDULDQWV LV DOVR D ERWWOHQHFN IRU UDUH GLVHDVH UHVHDUFK DQG FDQFHU JHQRPLFVOD FLQLQLQLQVH LQVR K FRQWH[WV RIWHQ XQFRYHUV YDULDQWV WKDW UHPDLQ XQWHVWHG IRU WKHLU IXQFWLRQDO FRQVHTXHQFH IXUWKJU H[SDQGLQJ WKH OLVW RI YDULDQWV RIFQLQFDJFD80JFDH6\ WHFKQRORJLHV IRU YDULDQW VFUHHQLQJ ± VRPHWLPHV FDOOHG PXOWLSOH[HG DVVD\V RI YDULDQW HIIHFWV RU 0$9(V 6WDULWD HW DO :HLOH HW DO RIIHU GLI ± QWHQWHVHVHVHV V 2QH JHQHUDO FDWHJRU\ RI 0$9(V DUH DVVD\V LQ ZKLFK D SUHGHILQHG VHW RI YDULDQWV
1. 纽约基因组中心,纽约州纽约市,美国。2. 纽约大学生物学系,纽约州纽约市,美国。† 这些作者贡献相同。 * 电子邮件:neville@sanjanalab.org 关键词:Prime 编辑、CRISPR、致病变异、ClinVar、人类遗传变异
碱基编辑器是一类新的可编程基因组编辑工具,它将 ssDNA(单链 DNA)修饰酶与催化失活的 CRISPR 相关(Cas)核酸内切酶融合,以诱导高效的单碱基变化。目前已报道了数十种碱基编辑器,显然这些工具是高度模块化的;ssDNA 修饰酶和 Cas 蛋白的多种组合产生了各种碱基编辑器,每种编辑器都有其独特的属性和潜在用途。从这个角度来看,我们描述了当前可用的碱基编辑器,强调了它们的模块化特性并描述了每个组件可用的各种选项。此外,我们简要讨论了合成生物学和基因组工程中的应用,在这些应用中,碱基编辑器比其他技术具有独特的优势。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2020 年 2 月 9 日发布。;https://doi.org/10.1101/2020.02.07.939074 doi:bioRxiv 预印本